PHYTOCHEMICAL STUDIES ON CERTAIN HYOSCYAMUS SPECIES

THESIS

Submitted For

The Degree Of
MASTER OF SCIENCE

Ву

, A

KHALED AHMED SAAD SHAMS

(B.Sc. AIN-SHAMS UNIVERSITY)
NATIONAL RESEARCH CENTER

From

Department of Botany Faculty of Science Ain-Shams University

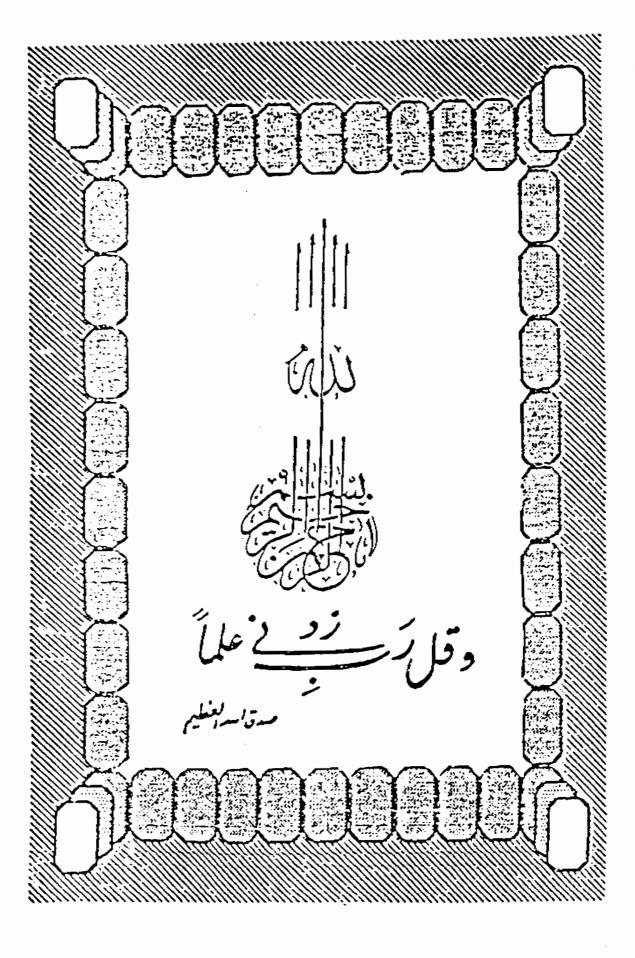
CAIRO-EGYPT

PHYTOCHEMICAL STUDIES ON CERTAIN HYOSCYAMUS SPECIES

THESIS

Under Supervision

Prof. Dr. Sayed Farag Khalifa.


5. F. Khalip

Prof. Dr. Fayza Mohamed Hammouda. F. M. Hammoude

Prof. Dr. Shams El-Din Imbaby Ismail Shans J. J. M.

Prof. Dr.Salah Sayed Ahmed

DEDICATION

TO WHO GIVES ME EVERY THING AND TAKES NOTHING,

MY DEAREST FATHER

ACKNOWLEDGMENT

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Prof. Dr. Sayed Farag Khalife, Professour of Plant Taxonomy, Faculty of Science, Ain-Shams University; Prof. Dr. Fayza Hammouda and Prof. Dr. Shams El-Din Imbaby Ismail, Pharmaceutical Science Department, National Research Center, Cairo, Egypt for their supervision, support, advices during the work and their great help in the preparation of the thesis.

My acknowledgment is due to Prof. Dr. Salah Sayed Ahmed,
Pharmaceutical Science Department, National Research Center, Cairo, Egypt for
his kind indispensable help and his constant assistance to allow this work to be
done.

I owe much gratitude to Dr. Elsayed Abou Elfotowh Omer, Pharmaceutical Science Department, National Research Center, Cairo, Egypt for his continuous patience during the work and preparation of the cultivation part of the thesis.

Grateful acknowledgment is expressed to the staff of the Chemistry of Medicinal Plants Laboratory, Pharmaceutical Science Department, National Research Center, Cairo, Egypt especially Adel Kamal Zaki and Nahla Abedel-Azim for their useful cooperation and helpful adivce all the time through out the entire work.

The author would like to express his deepest thanks to the National Research Center, Cairo, Egypt for all facilities given and finicial support which made this work possible

CONTENTS

	Page
SUMMARY	1
INTRODUCTION	3
PART I	
I.STUDIES ON WILD HYOSCYMUS MUTICUS	6
1 Taxonomy	7
2. Phenology	8
2.1. Gross Morphology	8
2.2. Floral Morphology	8
2.3. Life Form	11
2.4. Habitat	11
2.5. Plant Community	11
3. Geographical Distribution	12
4. Discription of Studied Spots	12
5. Soil Analysis	17
PART II	
II.STUDIES ON CULTIVATED HYOSCYAMUS MUTICUS	20
1. Ecophysiological Studies	21
1.1. Soil Analysis	21
1.2. Methods	21
1.2.1. Physical Analysis	21
1.2.2. Chemical Analysis	21
1.2.2.1. Soil Reaction (pH)	21
1.2.2.2. Total Soluble Salts (T.S.S.)	21
1 2 2 3 Anion	21

1.2.2.3.1. Bicarbonates	2:
1.2.2.3.2. Sulphates	2
1.2.2.4. Cations	2
1.2.2.5. Organic Carbon Content	2:
1.2.2.6. Calsium Carbonate	2:
1.3. Results and Discussion	2:
2. Seed Germination	20
2.1. Introduction	2
2.2. Materials	2
2.3. Methods	2
2.4. Results and Discussion	36
3. Alleopathic Effect of Seeds and Roots of H. muticus	3
3.1 Introduction	3
3.2 Materials	33
3.3.Methods	33
3.3.1 Seed Extract	33
3.3.2. Root Extract	3
3.4. Results and Discussion	39
3.4.1. Seed Extract	39
3.4.2.Root Extract	39
3.4.2.1. Effect on Seed Germination of Tested Plant	3!
3.4.2.2. Effect on Root and Shoot Length of Tested Plant	40
4. Cutivation	4:
4.1. Introduction	4:
4.2. Methods	41

4.2.1. Experiment One	46
4.2.2. Results and Discussion	50
4.2.3. Experiment Two	50
4.2.4. Results and Discussion	54
PART III	
III. PHYTOCHEMICAL STUDIES ON HYOSCYAMUS MUTICUS	55
1. Introduction	56
1.1 Major Tropane Alkaloid of Family Solanaceae	56
1.1.1. Atropine	56
1.1.1.1. Preparation	57
1.1.1.2.Properties	58
1.1.2. Hyoscyamine	59
1.1.2.1. Properties	59
1.1.3. Scopolamine	60
1.2. Tropane Alkaloids of Hyoscyamus Species	62
1.2.1. Effect of Heating and Drying	65
1.3. Determination of Tropane AlkaloidsUsing Chromatographic	
Method	66
1.3.1. Thin Layer and Column Chromatography	66
1.3.2. Paper Chromatography	69
1.3.3. Ion Exchange Chromatography	73
1.3.4. High Performance Liquid Chromatography	73
2. Quantitative Determination of Total Alkaloidal Content of H. muti	cus
leaves	76
2.1. Materials	76
2.2. Proceedure	76
2.3. Titremetric Method	77

2.3.1. Calculations	78
2.3.2. Results and Discussion	85
2.4. Evaluation of Scopolamine and Hyoscyamine In H. muticus	86
2.4.1. Materials	86
2.4.2. Methods	87
2.4.3. Calculations	88
2.4.4. Results and Discussion	102
3. Methods of Extraction and Fractionation of Tropane Alkaloids	103
3.1. Materials	103
3.2. Method I (Ion Exchange Chromatography)	103
3.2.1. Investigation of The Total Alkaloids Using TLC	104
3.2.2. Results and Discussion	107
3.3. Method II (Adsorption on Charcoal)	108
3.3.1. Results and Discussion	112
3.4. Method III (Partition at Different pH's)	113
3.4.1 Results and Discussion	116
3.5. Method IV (Improvement of Method III)	117
3.5.1. Results and Discussion	120
4. Preparation of Total Alkaloids of H. Muticus In Different Dry Forms	121
4.1. Spray Drying	121
4.2. Drying Under Reduced Pressure	125
4.3. Results and Discussion	127
DISCUSSION	128
REFERENCES	134

LIST OF TABLES

Table No.	Page
Table (1) Mechanical Soil Analysis of Spot.I.	18
Table (2) Chemical Soil Analysis of Spot I.	19
Table (3) Mechanical Soil Analysis of Two Different Depth of	
Both Farms	23
Table (4) Chemical Soil Analysis of Two Different Depth of Both Farms	24
Table (5) Effect of GA3 on The Germination Percent of H. muticus Seed	ls 29
Table (6) Allelopathic Effect of H. muticus L. Root Extract on	
Percentage of Seed Germination of Roselle, Maize and	
Sunflower(Germinated in Petri-Dish).	35
Table (7) Allelopathic Effect of H. muticus L. Root Extract on	
Percentage of Seed Germination of Roselle, Maize and	
Sunflower (Germinated in Sandy-Dish).	36
Table (8) Allelopathic Effect of H. muticus Root Extract on Root and	
Shoot Length (Cm) of Roselle, Maize and Sunflower Seedling	
(Germinated in Petri-Dish).	37
Table (9) Allelopothic Effect of H. muticus Root Extract on Root and	
Shoot Length (cm) of Roselle, Maize and Sunflower Seedling	
(Germinated in Sandy-Dish).	38
Table (10) Plant Analysis at Various Growth Stages of H. muticus	
Leaves Cultivated In Experimental Farm of Faculty of	
Pharmacy.	49
Table (11) Growth Criteria, Moisture Content And Ash Content of	
Leaves at Various Growth Stages of H. muticus L.	
Cultivated in 6th October Farm (February 1992)	53

Table (12) Seasonal Variations of Total Alkaloidal Contents of Wild H.	
muticus Leaves Collected From Different Phytogeographical	
Regions.	80
Table (13) Total Alkaloidal Contents of Cultivated H. muticus Leaves at	
Various Growth Stages in Experimental Farm of Faculty of	
Pharmacy, Giza, (December 1991).	81
Table (14) Total Alkaloidal Contents of Cultivated H. muticus Leaves in	
6 <u>th</u> October Farm, Noubaria (February 1992).	83
Table (15) Peak Areas of Standard Hyoscyamine.	92
Table (16) Peak Areas of Standard Scopolamine.	94
Table(17) Evaluation of Scopolamine and Hyoscyamine Using (HPLC).	96
Table (18) Ion-Exchange Resin Column Fractionation of Total	
Alkaloids.	105
Table (19) Charcoal Column Fractionation of Total Alkaloids.	110
Table (20) Fractionation of Total Alkaloids at Different pHs.	114
Table (21) Fractionation of Total Alkaloids at Different pHs.	118
Table (22) Total Alkaloids of Dry Forms Using Spray Drying.	123
Table (23) Total Alkaloids of Dry Forms Using Rotatory Evaporator.	126

LIST OF FIGURES

Fig.No.	Page
Fig. (1) Plate of Gross and Floral Morphology.	9
Fig. (2) Map Showing The Distribution of H. muticus of Studied Spots	. 15
Fig. (3) The Wild H. muticus Collected From Cairo-Ismailia Desert	
Road and From Saint Cathrine.	16
Fig. (4) Photo of H. muticus Plant Cultivated in Faculty of Pharmacy	
Farm.	48
Fig(5) Photo of H. muticus Cultivated in 6th October Farm.	52
Fig. (6) Major Trobene Alkaloids of Family Solanaceae.	61
Fig. (7) Alkaloidal Content of H. muticus Leaves Cultivated in	
Faculty of Pharmacy Farm at Different Growth Stages.	82
Fig. (8) Alkaloidal Content of H. muticus Leaves Cultivated	
in 6th October Farm at Different Growth Stages.	84
Fig. (9) HPLC Chromatogram of Standared Scopolamine.	93
Fig. (10) HPLC Chromatogram of Standared Hyoscyamine.	95
Fig. (11) HPLC Chromatogram of Total Alkaloids of H. muticus	
Leaves Collected From Spot I.	97
Fig. (12) HPLC Chromatogram of Total Alkaloids of H. muticus	
Leaves Collected From Spot II.	98
Fig. (13) HPLC Chromatogram of Total Alkaloids of H. muticus	
Leaves Collected From Spot III.	99
Fig. (14) HPLC Chromatogram of Total Alkaloids	
of H. muticus Leves Cultivated in Faculty of Pharmacy Farm.	100
Fig. (15) HPLC Chromatogram of Total Alkaloids	
of H. muticus Leves Cultivated in 6th October Farm.	101