## BIOCHEMICAL STUDIES ON AQUACULTURE FISH FED ON DIFFERENT DIETS

BY

ASMAA ALY AHMED EL KERDAWY

A thesis submitted in partial fulfilment

of

the requirements for the Degree of

 $\frac{631.47}{1.4}$  DOCTOR OF PHILOSOPHY

in

(Agricultural Biochemistry)

Department of Agricultural Biochemistry

Faculty of Agriculture

Ain Shams University

1992



Central Library - Ain Shams University

### Approval Sheet

#### BIOCHEMICAL STUDIES ON AQUACULTURE FISH FED ON DIFFERENT DIETS

BY

#### ASMAA ALY AHMED EL KERDAWY

B.Sc.(Agric.Biochem.), Cairo University, 1974 M.Sc.(Agric. Biochem.), Ain Shams University 1985

This thesis for Ph D degree has been approved by:

Prof. Dr. M. A. TORKI

Prof. of Agric. Biochem., Faculty of Agric., Moshtohor. M.A. Tolk-

Prof. Dr. F.M. ABD ELNAEM

Prof. of Agric. Biochem, Faculty of Agric., Ain Shams University.

J.M. Abdel nac

El-Hadidy, 2.

Prof. Dr. Z. A. EL HADIDY

Prof. of Agric., Biochem., Faculty of Agric., Ain Shams University.

Date of examination: 2/9/1992.



#### BIOCHEMICAL STUDIES ON AQUACULTURE FISH FED ON DIFFERENT DIETS

BY

#### ASMAA ALY AHMED EL KERDAWY

B.Sc.(Agric.Biochem.), Cairo University, 1974 M.Sc.(Agric. Biochem.), Ain Shams University, 1985

Under the Supervision of: Prof. Dr. SALWA A. EID
Prof. of Biochem. Dept.,
Faculty of Agriculture,
Ain Shams University.

Prof. Dr. Z. A. EL HADIDY Prof. of Biochem. Dept., Faculty of Agriculture, Ain Shams University.

Prof. Dr. M. A. SHATLA Prof. of Biochem. Dept., Faculty of Agriculture, Ain Shams University.

#### ABSTRACT

Four dry ingredients, brewer tefla, activated sludge, single cell algae, and brewer yeast were tested with Tilapia niloticus. Chemical composition, amino acid content, fatty acid content, nucleic acid content and digestibility coefficient were determined for the test ingredients. All the test ingredients were well digested, assimilation values ranging from 59.9% (activated sludge) to 94.4% (brewer yeast). Four experimental diets and the control have been prepared to reach 25% crude protein. The experimental period was 12 weeks. We found that there is a highly correlation between fat content of fish and growth r = 0.879. and negative correlation between ash and growth r=-0.771. but low correlation between protein content and growth were observed. We found that all the fish fed the experimental diets characterized by high percentage of total unsaturated fatty acids and a higher correlation between w3 fatty acids and crude fat, moisture, weight gain r=0.995,

Central Library - Ain Shams University

since the correlation between w6 fatty acids and the previous parameters was 0.713. Enzyme activities of fish liver tissue were studied, GOT activity was higher in fish fed diet contain algae. GPT activity did not differ significantly among treatments. We notice a highly relation between RNA/DNA concentration in tested ingredients and RNA-DNA concentration in fish muscle. Body weight increament after 12 weeks of experiments showed no significant difference between the average body weight of fish fed diet contain yeast and let contain algae. However, there were a significant different in average body weight of fish fed diet contain brewer tefla and diet contain activated sludge.

#### ACKNOWLEDGEMENT

The writer is greatly indebted to Prof. Dr. SALWA

A. EID, Professor of Agric. Biochemistry for her former
supervision and generous valuable help throughout the promotion of this work.

My words bound no limits in its expression to Prof. Dr. EL HADIDY, Z. Professor of Agric. Biochemistry for his frutiful help, advice and constructive criticism during his supervision in connection with reading the manuscript and the final preparation of the dissertation.

Thanks are also to Dr. SHATLA, M. Professor of Agric. Biochemistry for his willings, advice, helpness during this work.

The writer could never forget the great help and efforts of Dr. AMIN M. ABD ALLAH, Professor of Food Science & Technology, Faculty of Agriculture, Ain Shams University, who provided all fasilities, technical assistance and for preparing the manuscript and sincer guidance.

Deepest thanks are extended to Dr. A. KAHATTER,

The director of Centeral Laboratory for Fish Research.

Abbassa, Sharkia, for his great efforts and helpful throughout the promoting of the work.

Many thanks to Dr. DAWLAT A.S. for her available help and effort in this manuscript.

The author is especially indebted and muchly appreciated the generous assistance of her collegus of the Centeral Laboratory for Fish Research especially an engenearing Yassir Awed and Dr. Magdy Salah, and Computer department.

# CONTENTS

|    |       |                                                                            | Page |
|----|-------|----------------------------------------------------------------------------|------|
| ** | INTRO | DUCTION                                                                    | 1    |
| ** | REVIE | W OF LITERATURE                                                            | 5    |
|    | 1.1.  | The experimental ingredients and replacement of fish meal                  | 5    |
|    | 1.2.  | Amino acid content of the experimental ingredients.                        | 9    |
|    | 1.3.  | Fatty acid composition of the experimental ingredients.                    | 11   |
|    | 2.1.  | Effect of the experimental diets on body composition                       | 13   |
|    | 2.2.  | Effect of fatty acid composition of experimental diets on fish fatty acid. | 14   |
|    | 2.3.  | Effect of dietary protein on enzymes act-<br>ivities of fish liver tissue  | 17   |
|    | 2.4.  | Effect of experimental diets on fish muscle RNA/DNA                        | 18   |
|    | 2.5.  | Sodium dodecyl-polyacralimid gel electro-<br>phoresis.                     | 20   |
|    | 3.    | Nutritional Parameters                                                     | 22   |
|    | 4.    | Digestibility Coefficient                                                  | 26   |
| ** | MATER | IALS AND METHODS                                                           | 30   |
|    | 1.1.  | Test animals and experimental system                                       | 30   |
|    |       | Central Library - Ain Shams University                                     |      |

|      |                                                           | Page       |
|------|-----------------------------------------------------------|------------|
| 1.2. | Diet preparation                                          | 32         |
| 1.3. | Feeding regium                                            | 32         |
| 2. D | etermination of major components                          | 33         |
| 2.1. | Determination of amino acids of experimental ingredients. | 34         |
| 2.2. | Determination of fatty acid composition                   | 40         |
| 2.3. | Determination of Enzymes activity                         | 43         |
| 2.4. | Determination of DNA/RNA content                          | 43         |
| 2.5. | Polyacrylamid gel electrophoresis of muscle proteins      | 45         |
| 3. N | utritional Parameters                                     | 47         |
| 3.1. | Body weight increament                                    | 47         |
| 3.2. | Specific growth rate                                      | <b>4</b> 7 |
| 3.3. | Food conversion ratio                                     | <b>4</b> 8 |
| 3.4. | Protein efficiency ratio                                  | 48         |
| 4. D | Digestibility Coefficient                                 | <b>4</b> 8 |
| 4.1. | Test animals and acclimation procedures                   | 48         |
| 4.2. | Diet preparation                                          | 49         |
| 4.3, | Feaces collection procedure                               | 49         |
| 4.4. | Mathematical formulation                                  | 50         |
| 4.5. | Analysis of indicators substance                          | 50         |
| 4.6. | Chromic oxide analysis                                    | 50         |
| 4.7. | Chromogen analysis                                        | 50         |
|      | Central Library - Ain Shams University                    |            |

|    |         |                                                                                                | Page |
|----|---------|------------------------------------------------------------------------------------------------|------|
|    | 5. Sta  | tistical Analysis                                                                              | 52   |
| ** | RESULTS | AND DISCUSSION                                                                                 | 53   |
|    | PART 1: | Analysis of Ingredients Uzed in Formu-<br>lation of Fish Diets.                                | 53   |
|    | 1.1.    | Chemical analysis of experimental ing-<br>redeints                                             | 53   |
|    | 1.2.    | Amino acid content of the experimental ingredients                                             | 56   |
|    | 1.3.    | Fatty acid composition of the experimental i redients                                          | 63   |
|    | PART 2: | Relation Between Diets Constituents and<br>Selected Biochemical Properties on Nile<br>Tilapia. | 67   |
|    | 2.1.    | Effect of experimental diets on carcass composition                                            | 67   |
|    | 2.2.    | Effect of experimental diets on fatty acid composition                                         | 69   |
|    | 2.3.    | Effect of experimental diets on enzymes activity of fish liver tissue.                         | 78   |
|    | 2.4.    | Effect of the experimental diets on fish muscle DNA/RNA concentration.                         | 91   |
|    | PART 3: | Nutritional Parameters                                                                         | 100  |
|    | 3.1.    | Weekly body weight gain %                                                                      | 102  |
|    | 3.2.    | Specific growth rate                                                                           | 104  |

|                 |                                                | _            |
|-----------------|------------------------------------------------|--------------|
|                 |                                                | Page         |
|                 |                                                |              |
|                 |                                                |              |
|                 | 3.3. Final weight gains                        | 106          |
|                 | 3.4. Feed conversion and protein efficiency    | 108          |
|                 |                                                |              |
|                 |                                                |              |
|                 | PART 4: Digestibility Coefficient for the Exp- |              |
|                 | erimental Ingredients.                         | 111          |
|                 |                                                |              |
|                 |                                                |              |
| *               | SUMMARY                                        | 115          |
| *               | CONCLUSION                                     | 122          |
|                 |                                                | 133          |
| · <del>**</del> | REFERENCES                                     | 123          |
| *               | APPENDIX                                       | 1 <b>3</b> 9 |
| *               | ADADTO CIMMADV                                 | _            |

# LIST OF TABLES

| No. | Title                                                                                                                    | Page |
|-----|--------------------------------------------------------------------------------------------------------------------------|------|
| 1   | Ingredients composition (%) of the experimental diets.                                                                   | 35   |
| 2   | The chemical analysis of the experime-<br>ntal diets (% on dry basis).                                                   | 36   |
| 3   | The proximate analysis of some ingred-<br>ients used in feeding formulation for<br>fish.                                 | 54   |
| 4   | Mineral content of some ingredients used in feed formulation for fish.(% of ash).                                        | 55   |
| 5   | Amino acid profile of the experimental ingredients. (Percent %)                                                          | 58   |
| 6   | Fatty acids composition (as % total fatty acid weight) of experimental ingredients lipids.                               | 64   |
| 7   | Chemical analysis of whole fish, oreochromis niloticus after feeding on the experimental diets. (% Based on dry matter). | 68   |
| 8   | Fatty acid composition (as % total fatty acid weight of carcass lipids of Oreochromis niloticus fed different diets.     | 70   |
| 9   | Comparison between w3 and w6 of the Tila-<br>pia fish and the experimental ingredients.                                  | 73   |

| No. | Title                                                                                                          | Page |
|-----|----------------------------------------------------------------------------------------------------------------|------|
| 10  | Relation between w3/w3 and w6/w6 of the tilapia fish in relation to the experimental ingredients.              | 75   |
| 11  | Changes of GOT, GPT and Alkaline phosphatase activities as affected by different diets.                        | 80   |
| 12  | The relation between enzymes activity and growth, protein efficiency, and feed conversion.                     | 87   |
| 13  | Effect of the experimental ingredients on fish muscle DNA-p-RNA-p concentrat-ion of nile tilapia. (mg/100 g).  | 92   |
| 14  | Molecular weight of water soluble mus-<br>cle protein of fish fed the experimental<br>diets.                   | 97   |
| 15  | Percentage weight gain for fish fed the experimental diets.                                                    | 103  |
| 16  | Specific growth rate percentage for<br>Oreochromis niloticus fed the experim-<br>ental diets.                  | 105  |
| 17  | Feed conversion ratio, feed efficiency ratio and protein efficiency ratio for fish fed the experimental diets. | 107  |

| No. | Title                                                                        | Page |
|-----|------------------------------------------------------------------------------|------|
| 18  | Crude protein digestability coeffici-<br>ent of the experimental ingredients |      |
|     | for Oreochromis niloticus.                                                   | 112  |

### LIST OF FIGURES

| No. | Title                                                                      | Page |
|-----|----------------------------------------------------------------------------|------|
|     |                                                                            | 55   |
| 1   | Amino acid profile of the experimental ingredients %                       | 59   |
| 2   | Amino acid profile of the experimental ingredients %                       | 60   |
| 3   | Amino acid profile of the experimental ingredients %                       | 61   |
| 4   | Relation between w3 of the fish and w3 of the ingredients                  | 76   |
| 5   | Relation between w6 of the fish and w6 of the ingredients                  | 77   |
| 6   | Changes of GOT activities as affected by different diets.                  | 81   |
| 7   | Changes of GPT activities as affected by different diets.                  | 82   |
| 8   | Changes of Alkaline phosphatase activities as affected by different diets. | 83   |
| 9   | Regression of gain weight on alkaline phosphatase.                         | 91   |