

Study of the Structural, Optical and Transport Properties of SnSe Thin Films

Thesis

Submitted to Ain Shams University
In Partial Fulfilment of the Requirements
of the Degree of Master of Teacher
Preparation in Science (Physics)

By Karam Fathy Abd El-Rahman

(B.Sc. & Ed. (1986) G. Diploma of Teacher Preparation - Physics (1988) Sp.Diploma of Teacher Preparation - Physics (1989)

Department of Physics Faculty of Education Ain Shams University

4

1993

ACKNOWLEDGEMENT

I would like to empress my thanks to Frof. Dr. A. A. El-Shazly, Head of Thys. Dep. Faculty of Education, din - Thams university, for suggesting the point of research, supervision advaice, and valuable discussions.

I would like to express my gratitude to Frot. Dr. M. M. El-Nahas, Trof. of Thys., Faculty of Education, din - Thams university, for continuous supervision, encouragement and guidance.

My thanks are also for Dr. S. B. Yousef Ass. Frol. of Mys., Faculty of Education, Air - Thams university for supervision.

Eneat thanks are also presented to Dr. D. Abdel-Hady do. Prof. of Thys., Faculty of Engineering, sin - Thams university, and H. S. Soliman Ass. Frof. of Thys., Faculty of Education, sin - Thams university, for their true help throughout the present work.

The author acknowledge the cooperation and helps offered by the group of thin film laboratory, Thys. Dep. Faculty of Education, sin - Thams university where the present work was conducted.

CONTENTS

	PAGE
ABSTRACT	1
INTRODUCTION	4
CHAPTER I	
LITERATURE REVIEW	
I.1: STRUCTURAL PROPERTIES OF ShSe	5
1.2) ELECTRICAL PROPERTIES OF SnSe	13
1.3: OPTICAL PROPERTIES OF SnSe	18
CHAPTER II	
EXPERIMENTAL TECHNIQUES	
II.1) MATERIAL UNDER INVESTIGATION	3.5
II.2 PREPARATION OF Shse THIN FILMS	35
II.3) METHODS FOR FILM THICKNESS MEASUREMENTS	39
11.4) STRUCTURAL CHARACTERISTICS INVESTIGATIONS	43
II.5) ELECTRICAL RESISTIVITY MEASUREMENTS	48
II.5) THERMOELECTRIC POWER MEASUREMENTS	50
11.7) DETERMINATION OF THE OPTICAL CONSTANTS OF	
ABSORBING FILMS DEPOSITED ON NONABSORBING	
SUBSTRATES	53

CHAPTER 111

EXPERIMENTAL RESULTS AND DISCUSSION

111.1 CTFUDIUERO SAGEERUIES OF SMSe THIM FILMS:	67
III.1 A.E.EAY DIFFFACTION ANALLYSIS OF Sise	
MATERIAU IN A BULK (WAFER) FORM	67
131.1.b H-FAY DIFFRACTION ANALYSIS OF SmSe	
MATERIAN IN A POUTER FORM	70
191,100 STEMCIDENT DEFENDENCE OF SESS THIN FILMS	
IN FILM THICKNESS	7.2
111.1.6 GIRUTURAL DEPARDENCE OF Ense THIN FILMS	
OF THE SUBSTRATE TEMPERATURE	77
111.1.elpyRuctural Dependence of Shee thin Films	
ON THE AMNEALING TEMPERATURE	78
101.1.5000 MEMOS COM AND BOTFRACTION EDFOTRON	
BILIEURO PE OF SECH THIN FILMS	81
া বি.বি. সংস্থাত্তিৰেই চিত্ৰিস্কৃতিক পদ ৪৯৪৮ আনাস দ্যুত্ৰের	83
111.2 FIELENTRICAL RESISTIVITY OF SASE THIN FILMS	89
FIGURE THIN FILMS DOWER OF SERN THIN FILMS	93
CONTRACTOR OF CASE THIS FILMS	99
II. O meter electroni dictribution or the	
TO ME WALL THE BOARD THE REPUTOTANCE	
the first film of the contraction of the second	99

ï

III.3.b) SPECTRAL DISTRIBUTION OF BOTH THE REFRACTI	VΕ
INDEX (n) AND THE ABSORPTION INDEX (k)	
FOR SDSe FILMS OF DIFFERENT THICKNESSES.	100
III.3.c)DETERMINATION OF THE SINGLE OSCILLATOR	
PARAMETERS AND THE HIGH FREQUENCY	
DIELECTRIC CONSTANT	103
III.3.d) THE SPECTRAL DISTRIBUTION OF THE	
ABSORPTION COEFFICIENT(α)	
OF SnSe FILMS	112
III.3.e OPTICAL PROPERTIES DEPENDENCE ON THE	
SUBSTRATE TEMPERATURE	118
III.4: GENERAL DISCUSSION	L19
CONCLUSIONS	L26
REFERENCES	L28
AMARIC SUMMARY	

ABSTRACT

ABSTRACT

This work represents the study of structural, optical and electrical properties of SnSe thin films in the thickness range of 30 nm - 400 nm. The SnSe films were prepared by thermal evaporation as well as by flash evaporation techniques in vacuum of 10⁻⁵ Torr. The rate of deposition in both cases was kept constant at 60 nm/min. Two different kinds of substrates were used .Quartz substrates were used for investigating the optical properties while glass substrates were used for studying structural and transport properties.

Our studies on the structural properties of SnSe films involved both X-ray diffraction and electron diffraction techniques to check the crystallinity of the film, the transmission electron microscopy (TEM) was used to determine the grain size of microcrystallites. From this study it was found that:

- 1- X-ray diffraction patterns carried out for all films showed that these films are polycrystalline of orthorhombic structure.
- 2- The grain size increases with increasing the film thickness.

- ł
- 3- The films prepared either by thermal evaporation or by flash evaporation techniques have polycrystalline nature of orthorhombic structure with the same lattice parameters.
- 4- Increasing the substrate temperature during the deposition process as well as increasing the annealing temperature improves the degree of crystallinity of the films.

The transport properties including the dark electrical resistivity and thermoelectric power were investigated. It was found from the dark electrical resistivity measurements of SnSe films in the temperature range of 150 K - 400 K. that they behave as a semiconducting material and decreases exponentially with increasing the film thickness. Graphical representation of log ρ = f(1000/T) yields one straight line in the above mentioned temperature range indicating one mechanism for electrical conduction. Thermal activation energies were calculated and it was seen that they decrease from 0.271 eV to 0.232 eV as film thickness increased from 30 nm to 305 nm. The free charge carriers concentration was found to be about $10^{15}~{\rm cm}^{-3}$. Thermoelectric power measurements showed that, SnSe films are p-type semiconductor.

The optical properties were studied for SnSe thin films of different thicknesses using throughout two groups of ShSe films . The first group was prepared at $T_{\rm g}$ = 300 K, and the other group was prepared at $T_s = 573$ K. The optical constants (refractive index n , absorption index k and absorption coefficient α) of SnSe films were determined in the spectral range of 760 nm - 2200 nm. It was found that both n and k are independent on the film thickness. The obtained values of n and k were used to calculate both the real and imaginary parts of the dielectric constants, as well as the surface and volume energy loss functions. The linearity of the two relations $(\alpha h v)^2$ and $(\alpha h v)^{1/2}$ versus the photon energy (hu) showed the existence of optical direct and indirect transitions. The direct and indirect energy gaps for the first group (prepared at 300 K) were found to be 1.27 eV and 0.895 eV respectively, while the direct and indirect energy gaps for the other group (prepared at 573 K) were found to be 1.23 eV and 0.895 eV respectively.

INTRODUCTION

INTRODUCTION

Stannous Selenide (SnSe) is a semiconductor with a band gap of about 1 eV which can be an efficient solar material (1-4). Also thin films of SnSe have great potential because of their application as memory switching devices (5). Recently attention has been focused on the optical properties of layered semiconductor SnSe, notably because of its use in holographic - recording systems (6). The direct band gap has been studied by means of electroreflectance and thermoreflectance measurements (7,8) as will as by absorption measurements (9,10). The latter technique has also been used to observed indirect transitions (9,11-15). However considerable scatter is found among the proposed values for the electronic transition thresholds.

According to X-ray structural analysis (16-18) SnSe crystallizes in an orthorhombic lattice with a = 4.46 Å, b = 4.19 Å and c = 11.57 Å. However, according to Mikolaichak et al (19.20) as well as Palatnik et al. (21) thin films of SnSe also contain a cubic modification with the NaCl Structure. The appearance of NaCl structure in SnSe films has not been confirmed as reported by Avilov et al. (22).

These considerations induced us to undertake a systematic study of structural, electrical and optical properties of stannous selenide (SnSe) in thin film form Therefore, the aim of the present work was to investigate:

- 1- The structural properties of SnSe thin films.
- 2- The electrical resistivity as well as the thermoelectric power of SnSe thin films.
- 3- The optical properties of SnSe thin films.

CHAPTER (I) LITERATURE REVIEW

CHAPTER I LITERATURE REVIEW

The present chapter deals with the literature review concerning the structural, electrical and optical properties of stannous selenide either in a bulk form or in a thin film form.

I-1) Structural properties of SnSe.

Stannous selenide (SnSe) compound has an orthorhomobic crystal structure and belongs to the D_{2h}^{16} -Pcmn space group with the lattice constants: a = 4.46 Å, b = 4.19 Å and c = 11.57 Å $^{(17,24)}$ or belongs to the D_{2h}^{16} -Pnma space group with the lattice constants: a = 11.42 Å, b = 4.19 Å and c = 4.46 Å $^{(22)}$ or belongs to the D_{2h}^{16} -Pbnm space group with the lattice constants: a = 4.46 Å, b = 11.57 Å and c = 4.19 Å $^{(25,26)}$.

Palatnik and Levitin $^{(21)}$ studyied the structure of Sn-Se films, observed that stannous selenide had a structure of NaCl type of a = 5.99 Å.

Monocrystal SnSe prepared by ${\tt Zhdanova}^{(26)}$ has an orthorhmibic lattice with space group ${\tt D}_{2h}^{16}{\tt -Pcmn}$. Measuring thermal expansion coefficient along the three axes, he found that there were a relative elongations along the a,b and c