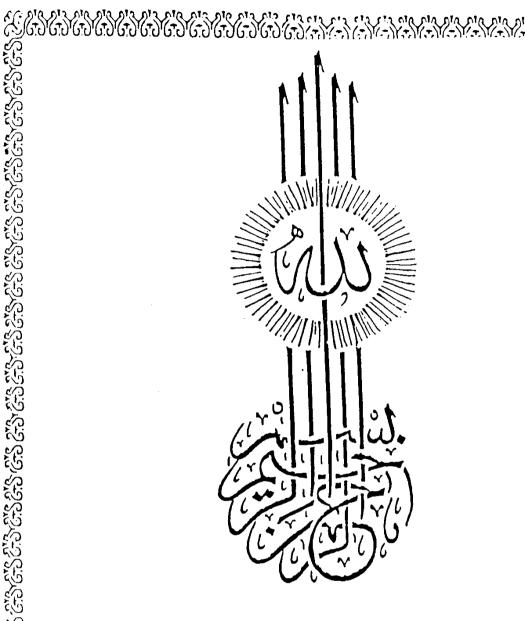

STUDIES ON PROPERTIES AND APPLICATIONS OF MEMBRANES OBTAINED BY RADIATION GRAFTING

SUBMITTED TO

College For Women

AIN SHAMS UNIVERSITY


U5013

OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN CHEMISTRY

IN THE FULFILMENT

NATIONAL CENTRE FOR RADIATION
RESEARCH AND TECHNOLOGY
(ATOMIC ENERGY AUTHORITY)
EGYPT

1993

الماتيات الأساها المنتيات المنتيات المنتيات

الإسراء آية ٨٥

≪(صحق الله العظيم)≫

THESIS ENTITLED

STUDIES ON PROPERTIES AND APPLICATIONS OF MEMBRANES OBTAINED BY RADIATION GRAFTING

THESIS ADVISORS

PROF. DR. A. A. TAHA

PROF. DR. A. A. EL-MILIGY

PROF. DR. A. M. DESSOUKI

APPROVED

A A E Milian

Al S. Take

A.T. Dosenil

HEAD OF CHEMISTRY DEPARTMENT

PROF. DR. MARGUERITE A. WASSEF

Karguent A. Wassef

ACKNOWLEDGEMENT

The author is greatly indebted to Professor Dr. Ahmed Λ . Taha, Dean of the University College for women, Ain Shams University, Professor Dr. Ahmed A. EL-Miligy, Chairman of the National Centre for Radiation Research and Technology (NCRRT) and Professor Dr. Ahmed M. Dessouki, Head of Radiation Chemistry of Polymers Department for their supervision, fruitful discussions and facilities provided.

The author is deeply grateful to Professor Dr. E.M. Abdel-Bary, Head of Chemistry Department, Faculty of Science, Mansoura University for his continuous interest and valuable discussions throughout this work.

Many thanks are due to Dr. F. Zakaria, Chemistry Department at University College for women, Ain Shams University for her valuable help and facilities provided. Also my best thanks to all Colleagues in the department of Radiation Chemistry of Polymer (NCRRT) and the Nuclear Research Centre at Anshass for their help in various ways.

ABSTRACT

Grafting of acrylic acid and (AAc) 2-hydroxy ethyl methacrylate (HEMA) and their binary mixtures onto low density polyethylene and polypropylene films was carried out using γ -irradiation. The parameters affecting the graft yield were studied and the characteristics of obtained grafted films were evaluated. Besides, Possible biomedical application of the grafted films was discussed.

CONTENTS

Page

Aim of Wo	ork	
	CHAPTER (I)	
	INTRODUCTION	
I-1	Common Medical Applications	1
1-2	Polymer Membranes for Hemodialysis	
	in Artificial Kidney	2
I-3	Classification and Preparation of Mem-	
	branes Used in Hemodialysis	3
I-3-1	Cellulosic Membranes	3
1-3-2	Non-Cellulosic Membranes	4
I-3-2 -1	Cross-linked Water-Soluble Polymers	4
I-3-2-2	Polypeptide Membranes	6
I-3-2-3	Block Copolymer Membranes	6
I-3-2 -4	Modification of Non-Water Swellable Films	7
I - 3-3	Radiation Grafted Membranes	7
1-3-3-1	The Direct Radiation Grafting of	
	Vinyl Monomers Onto Polymers	8
I-3-3-2	Grafting on Radiation-Peroxidized Polymers	9
I-3-3-3	Grafting Initiated by Trapped Radicals	10
I-3-3-4	The Intercross-Linking of Two Dif-	
	ferent Polymers	11

1-3-3	3-4-1-a	Sur	face	gra	fted	Hydr	ogels	·			•	11
1-3-3	3-4-2-b	Bio	medic	al :	Impoi	ctant	Hydr	oge	ls			13
1-3-3	3-5 N	ucleopo	re Me	mbr	anes							14
I-4	P	olymer	Degra	dat	ion .							15
1-4-	1 s	olar Ra	diati	.on	• • • •							16
I-4-2	2 T	hermal	Energ	у .	• • • •							17
I-4-3	3- C	haracte	risat	ion	of I	Degra	ded F	oly	mer	s		18
			Cl	HAF	TER	(II)						
		RE	VIEW	OF	LIT	ERAT	rure	}				
II-1	Radiat	ion Gra	ftin	g of	f Vin	ıyl a	nd A	cry:	lic	Mon	ome	rs
	Onto P	olyolef	ines	• • •	• • • •		• • • • •	• • •	• • •		• •	19
11-2	Biolog	rical Ap	plica	tio	ns .						• •	35
11-3	Permea	bility	of Gr	aft	ed F	ilms						37
II-4	Biocom	patibil	ity o	f G	rafte	ed Po	lymeı	s.				44
11-5	Therma	ıl Agein	g and	l De	grada	ation	of I	Poly	mer		• •	48
			CF	HAP	TER	(III)						
			EXI	PER	IME	NTAL	ı					
TT 4	Mada and S	- 1 1	.									
		als and		_								54
11-2	Appara	tus and	Meth	ods	• • •	• • • • •	• • • • •		• • •	• • • •	• •	59

CHAPTER (IV) RESULTS AND DISCUSSION

IV-1	Radiation-Induced Grafting of Unitary Monome
	onto LDPE and PP Films 7
IV-1-1	Radiation Grafting of AAc 7
I-A-1-1	Effect of Inhibitor Concentration 7
IV-1-1-2	Effect of Radiation Dose on Grafting 7
IV-1-2	Radiation Grafting of HEMA 8
IV-1-2-1	Effect of Solvent 8
IV-1-2-2	Effect of Monomer Concentration 8
IV-1-2-3	Effect of Irradiation Dose 8
IV-2	Radiation-Induced Graft Copolymerization
	of Binary Monomer- Mixtures onto LDPE
	and PP Films 9
IV-2-1	Radiation Grafting of AAc/HEMA 9
IV-2-1-1	Effect of Inhibitor Concentration 9
IV-2-1-2	Effect of Solvent 9
IV-2-1-3	Effect of Comonomer Composition 9
IV-2-1-4	Effect of Comonomer Concentration 9
IV-2-1-5	Effect of Radiation Dose 10
IV-2-2	Radiation Grafting of AAc/EtA 10
IA-3	Characteristics of Grafted Films 10
IV-3-1	Electric conductivity 10
IV-3-2	Ion-Exchange Capacity 109
IV-3-3	Water Uptake Measurements

IV-3-4	Contact Angle Measurements	118		
IV-3-5	Scanning Electron Microscopy Measurements	123		
IV-3-6	Thermogravimetric Analysis	127		
IV-3-7	Differential Scanning Calorimetry	130		
IV-3-8	Spectroscopic Analysis	144		
IV-4	Applications of The Grafted Films	149		
IV-4-1	Thermal Oxidative Ageing of Grafted PE			
	and PP Films	149		
IV-4-2	Application of Grafted Films as Membrane			
	in Dialysis	165		
Summary and Conclusions 173				
REFERENCES 178				
SUMMARY IN ARARIC				

LIST OF TABLES

No.		Page
(1)	Effect of dose rate on the grafting percent of LDPE and PP-g-PAAc	77
(2)	Effect of solvent composition on the grafting percent of LDPE -g-P(AAc/HEMA)	97
(3)	Water uptake of LDPE-g-P(AAc/HEMA) at 24 hours and 25°c	119
(4)	Effect of grafting on the contact angle (θ) and water uptake	121
(5)	Effect of grafting on the contact angle (θ) of PP films	122
(6)	Effect of degree of grafting onto permeability of α -naphthoic acid for grafted films	167
(7)	Effect of degree of grafting onto permeability of vitamin B_{12} for grafted films	169
(8)	Effect of degree of grafting onto permeability of urea for grafted films	171

LIST OF FIGURES

No.		Page
(1)	Effect of the concentration of FeCl ₃	71
	used as inhibitor on the degree of	
	grafting of AAc	
(2)	Effect of the concentration of Mohr's	73
	salt use as inhibitor on the degree	
	of grafting of AAc	
(3)	Effect of the type of inhibitor on the	74
	degree of grafting of AAc onto LDPE	
(4)	Differential Scanning Calorimetry diagram	75
	of a) LDPE and b) PP films	
(5)	Effect of irradiation dose on the degree	79
	of grafting of aqueous AAc (50 wt%)	
(6)	Absorbance of grafted LDPE films vs.	81
	degree of grafting	
(7)	Effect of solvent composition on the degree	84
	of grafting of HEMA (25 wt%)	
(8)	Effect of monomer concentration HEMA on the	86
	degree of grafting of LDPE films	
(9)	Effect of monomer concentration (HEMA) on the	87
	degree of grafting of PP films	
(10)	Degree of grafting vs. irradiation dose for the	89
	grafting of HEMA (25 wt%) onto LDPE films	

No.		Page
(11)	Degree of grafting of HEMA (25 wt%) onto PP	90
	films vs. irradiation dose	
(12)	Degree of grafting of comonomer AAc/HEMA (1:1)	93
	onto LDPE films vs. inhibitor concentration	
(13)	Effect of inhibitor concentration of FeCl ₃	95
	on the degree of grafting of AAc, HEMA and	
	(AAC/HEMA)	
(14)	Degree of Grafting of (AAc/HEMA) comonomer onto	98
	LDPE and PP films vs. comonomer composition	
(15)	Degree of grafting of (AAc/HEMA) comonomer (1:1)	100
	onto LDPE and PP films vs. comonomer concentration	ı
(16)	Degree of grafting of comonomer (AAc/HEMA)	102
	25:25 onto PP and LDPE films vs. irradiation dose	
(17)	Degree of grafting of comonomer onto LDPE films	104
	vs. comonomer composition (EtA/AAc) and (HEMA/AAc)	
(18)	Effect of monomer concentration HEMA and EtA	106
	on the degree of grafting onto LDPE	
(19)	Effect of degree of grafting on the electrical	108
	conductivity of LDPE and PP films grafted with PAA	'C
(20)	Ion-exchange capacity for the LDPE and PP films	110
	grafted with AAc	
(21)	Water uptake percent vs. degree of grafting	112
	depending on the type of monomers :-	
	LDPE-g-AAC, LDPE-g-HEMA, LDPE-g-AAC/HEMA	

No.	Page
(22) Water uptake percent vs. degree of grafting	114
of comonomer; LDPE-g-P(AAc/EtA) and LDPE-g-P	
(AAC/HEMA)	
(23) Water uptake percent vs. degree of grafting for	116
LDPE-g- PAAc films at 25°c after film treatment	
and before film treatment	
(24) Kinetics of water uptake of LDPE-g-PAAc films	117
after treatment at 25°c	
(25) Scanning electron micrographs of :-	124
LDPE-g-PAAc, LDPE-g-PHEMA, PP-g-PAAc	
and PP-g-PHEMA	
(26) Scanning electron micrographs of :-	126
PP-g-P(AAc/HEMA), LDPE -g-P(AAc/HEMA)	
(27) Thermal gravimetric analysis diagam of LDPE	128
and LDPE-g-PAAc	
(28.a) DSC diagram for LDPE 1st run	131
(28.b) DSC diagram for LDPE-g-AAc 1st run	132
(28.C) DSC diagram for LDPE-g-PAAc cooling	134
(28.d) DSC diagram for LDPE 2 nd run	135
(29) I.R. spectroscopy for: LDPE-g-PAAc before ageing	137
and LDPE-g-PAAc after ageing	
(30) DSC for LDPE-g-PHEMA	138
(31) DSC for LDPE-g-PAAc/PHEMA	139
(32.a) DSC for PP film	141

No.		Page
(32.b) DSC	for PP-g-PAAc	142
(32.c) DSC	for PP-g-PAAc/PHEMA	143
	pectroscopy for LDPE film, LDPE-g-PAAc, HEMA and PP-g-P(AAc/HEMA)	147
(34) I.R. s	pectroscopy for LDPE film, LDPE-g-PEtA, -AAc and LDPE-g-P(EtA/AAc)	148
	of ageing time at 80°C on tensile stress E films, grafted, ungrafted and irradiated	150
	of ageing time at 100°c on tensile stress films, grafted and ungrafted	151
	ed tensile stress of aged LDPE films,	153
	ed tensile stress of aged PP films,	145
at bre	of ageing time at 80°c on elongation eak of LDPE films, grafted, ungrafted	15 5
	ed elongation at break of aged PE films,	156
	red spectroscopy for; unaged LDPE film LDPE film, irradiated LDPE film at 15 KGy	158
(42) Effect	of degree of grafting on yield stress of -AAc aged at 80°c for 14 days	160
tensil	e of degree of grafting on retained e stress of grafted LDPE films aged c for 14 days	161