METABOLIC ADAPTATION STUDIES RELATED TO

TOMATO SALT TOLERANCE

ΒY

OMAIMA MOHAMED MOHAMED SAWAN

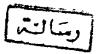


fig.

A thesis submitted in partial fulfillment

 \mathbf{of}

the requirments for the degree of

DOCTOR OF PHILOSOPHY

0. M

in

Agricultural Science
(Vegetable Crops)

1,00 ER 19

Department of Horticulture

Faculty of Agriculture

Ain Shams University

1992

APPROVAL SHEET

METABOLIC ADAPTATION STUDIES RELATED TO TOMATO SALT TOLERANCE

BY

OMAIMA MOHAMED MOHAMED SAWAN

B. SC. IN HORTICULTURE (CAIRO UNIV. 1975)

M. SC. IN VEGETABLE CROPS (AIN SHAMS UNIV. 1984)

This thesis for Ph. D. degree has been approved by,

1- Prof. Dr. Mohamed El-Beltagy

Prof. of Hort. (Vegetable), National Research Center.

2- Prof. Dr. Maher A. Wally

Prof. of Hort. (Vegetable), El-Azhar University.

3- Prof. Dr. Mohamed Abdel-Maksoud

Prof. of Vegetable Crops , Ain Shams University.

(Committee in Charge)

Date Of Examination: 25/1/1992

METABOLIC ADAPTATION STUDIES RELATED TO TOMATO SALT TOLERANCE BY

OMAIMA MOHAMED MOHAMED SAWAN

B.Sc.in Horticulture, Cairo Univ. 1975.

M.Sc.in Horticulture (Vegetable Crops), Ain Shams University 1984.

Under the Supervision of:

Prof. Dr. M.A. MAKSOUD

Prof. of Vegetable Crops, Dept. of Hort., Faculty of Agric., Ain Shams University.

Prof. Dr. A.S. EL-BELTAGY

Prof. of Vegetable Crops, Dept. of Hort., Faculty of Agric., Ain Shams University.

Prof. Dr. ALAA EL-DIN ZAKI BONDOK

Prof. of Horticulture, Dept. of Hort., Faculty of Agric., Ain Shams University.

ABSTRACT

This study was performed at Hort. Dept., Ain Shams Univ. and Dept. of Vegetable Crops, Univ. of California-Davis.

This work was set up in three exprimental studies to investigate the metabolic adaptation of salt tolerance in tomato as follows:

1-Ethylene (CzH4) as an indicator of salt tolerance in tomato:

Four genotypes, two salt tolerant (512 and Edkawy) and two salt sensitive (Ts and T1) were germinated and grown in agar

alone or combined with synthetic sea salt (150mM), 1-aminocyclopropane -1-carboxylic acid (ACC) and or cobalt (Co2+) ion. The results showed that the addition of salt (150mM) to the media resulted in: 1-At germination stage, reduced CzH4 emanation and germination% and increased the time for 50% germination (T50) and germination rate index (GRI) compared to control (OmM sea salt) in all genotypes. Adding ACC (5 µM) to saline media significantly increased CzH4 emanation and germination % in all genotypes and decreased T50 compared to salt alone. 2-At hypocotyl stage: A- hypocotyl growth decreased insignificantly in salt tolerant genotypes and significantly in salt sensitives. The addition of ACC (salt + ACC) further reduced hypocotyl lengths, whereas Co2+ (100µM) increased the net hypocotyl lengths. B-salt tolerant genotypes had greater root growth under salt treatment. Salt tolerant genotypes produced more C2H4 than salt sensitive genotypes at both the germination and hypocotyl stages under saline and nonsaline conditions. The data suggest that C2H4 might be used as a biochemical marker for screening tomato genotypes for salt tolerance.

2-The countribution of roots to salt tolerance:

Hypocotyls with or without roots (1.5cm) were grown in water, salt, ACC and AOA or in selected treatment combinations, the results indicated that excising roots from tomato seedlings significantly increased hypocotyl growth and CzH4 production compared to intact seedlings (with roots) under saline conditions. The results further indicate that

the excised hypocotyls were more tolerant to higher CzH4 than were hypocotyls with roots. The combined results indicate that the roots play an important role in mediating salt tolerance in all the genotypes examined.

3-The role of gibberellic acid (GAs) in the adaptation to salt stress:

Hypocotyls with or without roots were grown in water, salt (150mM), GAs, ACC and ${\rm Co}^{2+}$ and in combinations. Results emphasised that GAs counteracts the adverse effects of salinity on growth, and could play a role in the adaptation to salt stress by promoting growth and antagonizing the inhibitory action of CzH4 on hypocotyl growth. Among all treatments the best growth of excised hypocotyls was obtained with treatments of 150 mM salt + 100 μ M GAs + 50 μ M Co²⁺, followed by 150 mM salt + 100 μ M GAs.

ACKNOWLEDGEMENT

I wish to express deep sense of gratitude and thanks to professor Dr. M. A. Maksoud, Professor of Vegetable Crops, Horticulture Department, Ain Shams University, for valuable guidance, continuous advice and constructive supervision.

I also wish to extend my deep gratitude and sincere thanks to Dr. Mohamed S. El-Beltagy, Professor in Horticulture Department, National Research Centre for his generous help continuous advice and constructive supervision.

I also wish to extend my deep gratitude and sincere thanks to Dr. Adel S. El-Beltagy, Professor of Vegetable Crops, Horticulture Dept., Ain Shams Univ., for planning this work, his generous help, continuous advice and constructive supervision.

I also wish to extend my deep gratitude and sincere thanks to Dr. R. A. Jones, Professor of Genetics, Dept. of Vegetable Crops, Univ. of California-Davis, for planning this work, his generous help, continuous advice and constructive supervision.

I wish also to extend my deep gratitude and thanks to Dr. Alaa El-Din Zaki Bondok, Professor of Horticulture, Dept. of Horticulture, Ain Shams Univ. for his valuable advice and constructive supervision.

This work was carried out during a two years study leave supported by grants from, The Cooperative Arid Land Agricultural Research (CALAR) program, and The Dept. of

Vegetable Crops, Univ. of California-Davis which are kindely appreciated.

I also like to thank all the members in The Dept. of Vegetable Crops, Univ. of California-Davis, and my sincere appreciation too for all the secretarial members there.

I would also like to thank my collegues at the Horticulture Dept. National Research Centre, for their help and encouragement during this work.

I wish also to express my sincere appreciation to my husband for his valuable assistance and encouragement during this study, also to both my dear doughters, with my love.

I am particularly grateful to all Sawan'family for their great help and continuous encouragement during my study period.

Table of Contents

		Page		
Li	ist of Figures	I		
List of Tables				
List of Abbreviations				
Introduction				
Review of Literature				
	I- Effect of salt stress on seed germination	5		
	II- Effect of salt on plant growth	12		
	III-Effect of salt on root growth	16		
	IV- Effect of salt on growth of tomato	19		
	V-Effect of plant growth regulators on salt tolerance	21		
	V-1- Effect of ethylene and its interaction with salt			
	on growth.	22		
	V-1 -1- Effect of ethylene on seed germination	26		
	V-1 -2- Ethylene and root formation	30		
	V-1 -3- Ethylene and screening stressed plants	32		
	V-2- Effect of gibberellic acid and its interaction			
	with salt on growth	34		
	V-2 -1 Gibberellic acid and osmoregulation	37		
Μā	aterials and Methods	40		
R.e	esults and Discussion			
	1- Part:I			
	Ethylene as an indicator of salt tolerance in tomato.	51		
	2- Part:II			
	The countribution of roots to salt tolerance	78		
	3- Part:III			

Investigations of the potential adaptive role of		
gibberellic acid in seedling responses to salt stress. 8	3 8	
Summary and Conclusions 10	3 (
References 13	<u>L</u> 4	
Appendices 13	3 C	
Arabic Summary		

LIST OF FIGURES

	Page
FIG-1A&B. Illustration of the excised hypocotyl growth	
system	50
FIG-2A&2B. Effect of ACC & Co ²⁺ on seed germination in	
512 in absence and presence of salt	. 6 6
FIG-2C&2D. Effect of ACC & Co ²⁺ on seed germination in	
Edkawy in absence and presence of salt	. 67
FIG-2E&2F. Effect of ACC & Co ²⁺ on seed germination in	
To in absence and presence of salt	. 68
FIG-2G&2H. Effect of ACC & Co2+ on seed germination in	
T1 in absence and presence of salt	69
FIG-3A&3B. Effect of ACC & Co ²⁺ on germination % in	
absence and presence of salt	. 7Q
FIG-4A&4B. Effect of ACC & Co ²⁺ on CzH4 at germination	
stage in absence and presence of salt	7 4
FIG-5A&5B. Effect of ACC & Co ²⁺ on hypocotyl lengths	
in absence and presence of salt	. 75
FIG-6A&6B. Effect of ACC & Co ²⁺ on root lengths in	
absence and presence of salt	. 76
FIG-7A&7B. Effect of ACC & Co ^{z+} on C ₂ H ₄ at hypocotyl	
stage in absence and presence of salt	. 77
FIG-8. Effect of excised hypocotyl different lengths on	
its subsequance growth	. 84
FIG-9. Effect of salt & AOA (2µM) on hypocotyl growth	
with & without root (T5)	85
FIG-10A&10B&10C. Effect of salt & AOA (50uM) on hypocoty]

1 450
growth with & without root (Ts, Edkawy, 512) 86
FIG-11A&11B. Effect of roots & ACC on hypocotyl growth
(A) and CzH4 production under salt (B) 87
FIG-12A&12B&12C. Effect of GAs on hypocotyl growth of
Ts, Edkawy and 512 with & without root under
salinity 100
FIG-13A&13B. Short term (24h) effect of GA3, ACC & Co2+
on hypocotyl growth in absence and presence of salt. 101
FIG-14A&14B. Effect of GA3, ACC & Co2+on hypocotyl
growth in absence and presence of salt 102
FIG-15A&B&C&D. Effect of salt (150mM) & GA3 (100µM) & Co ²⁺
(50µM) on excised hypocotyl lengths 103
FIG-16A&16B. Short term (24h) effect of GA3, ACC & Co2+
on CzH4 production in absence and presence of salt 104
FIG-17A&17B. Effect of GAs, ACC & Co2+ on C2H4 production
in absence and presence of salt (72h) 105
FIG-18A&18B. Short term (24h) effect of GAs & Co ²⁺ on
hypocotyl growth (A) and CzH4 production (B) under
salinity 106
FIG-19A&B. Effect of salt & GA3 & Co ²⁺ and their
combinations on excised hypocotyl growth 107

LIST OF TABLES

	Page
Table-1- Time to 50 % germination (days) for 4 tomato	
genotypes in the absence or presence of 150mM salt.	.71
Table-2- Germination rate index in the absence or	
presence of 150mM salt	7 2
Table-3~ Effect of ACC and Co2+ ion on C2H4 production	
before germination (24h) in the absence or presence	
of 150mM salt	. 73

Abbreviations

ABA	Abscisic acid.
ACC	1-aminocyclopropane-1-carboxylic acid.
AOA	Aminooxyacetic acid.
AVG	aminoethoxyvinylglycine.
C2H4	Ethylene.
Co ²⁺	Cobalt (chloride form).
EFE	Ethylene-forming enzyme.
GАз	Gibberellic acid.
GRI	Germination rate index.
IAA	Indole -3- acetic acid.
T 50	Time for 50% seed germination.
CK	Cytokinin

INTRODUCTION