STUDY OF THE ROLE OF COPPER, ZINC, ERYTHROCYTE SUPEROXIDE DISMUTASE AND CATALASE IN RETINITIS PIGMENTOSA

Thesis

Submitted for the Degree of Ph.D. In Biochemistry

By

HAGER EMAM MOHAMED AHMED

Asst. Research - Biochemistry Department Research Institute of Ophthalmology

Under Supervision

OF

Prof. Dr. Mohamed Mohamed Abd-El-Fattah

M. A. Faltal-

Professor of Biochemistry

Faculty of Science

Ain-Shams University

Prof. Dr. Magdoline Yahya El-Gammal

Professor of Ophthalmology

Research Institute of

Opthalmology

Prof. Dr. Fawzi Amin El-Shobaki

67698

Professor of Biochemistry.

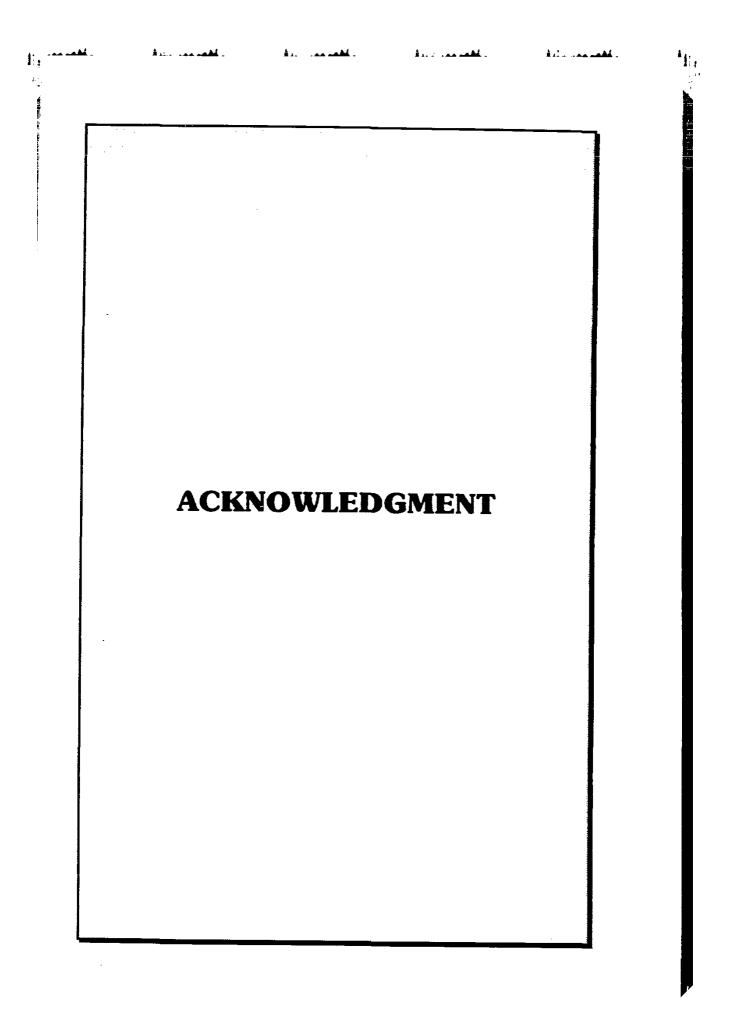
National Research Center

Dr. Nabil Abd-El-Kader Saleh

Lecturer of Biochemistry

Faculty of Science

Ain-Shams University


Faculty of Science Ain Shams University

1995

بسو الله الرحمن الرحيم وقل رب زدنی علماً صدق الله العظيم (سورة طُــة الآيه ١١٤)

TO MY MOTHER, MY HUSBAND AND MY CHILDREN

ACKNOWLEDGMENT

132 II - 14 - 15

. 14.

- 4.5

I express my deep thanks and deep gratitude to *Prof. Dr. MOHAMED M. ABD EL-FATTAH*, Prof. of Biochemistry, Faculty of Science, Ain-Shams University, for giving every possible help, and for his continuous support and advises during this work.

I owe special gratitude and my thanks to *Prof. Dr. FAWZI A. EL SHOBAKI*, Prof. of Biochemistry and Nutritional Chemistry, National Research Center, for suggesting the point of research, supervising the whole work and for his consistent supervision, valuable suggestion, building scientifically and above all for his in oral support and fatherly attitude, my deep thanks for him again.

My deep thanks and gratitude to Assist. Prof. Dr. NABIL ABD EL- KADER SALEH, Lecturer of Biochemistry, Faculty of Science, Ain-Shams University, for giving every possible help, and for his continuous support and advises during this work.

I express my thanks and deep gratitude to *Prof. Dr. MAGDOLINE Y. EL-GAMMAL*, Prof. of Ophthalmology Research Institute of Ophthalmology for giving every possible help, and for her continuous support and advises during this work.

I express my thanks and deep gratitude to Dr. MAHMOUD KADREY EL-MASRY, Assistant Prof. of Clinical Pathology in National Research Center, for giving every possible help during this work.

I am also grateful to Assist. Prof. Dr. SHADIA IBRAHIM ABD EL-SAIED, Assist. Prof. of Ophthalmology, Research Institute of Ophthalmology, for Clinical diagnosis of patients.

I am very grateful to Miss REDA MOHAMED HUSSEIN the technician in Biochemistry Laboratory, Research Institute of Ophthalmology, for her handly help during this work.

CONTENTS

Introduction and Aim of Work
Literature Review
The retina 3
Retinitis pigmentosa
Retinal cell metabolism
Metabolic changes associating retinitis pigmentosa
Zinc and copper in the eye
Zinc and copper in retinitis pigmentosa
Superoxide dismutase
Catalase 2
Superoxide dismutase and catalase in the eye
Vitamin E
Ultraviolet radiation and the eye
Diabetic retinopathy 36
Materials and Methods
(I) Materials
(II) Methods
- Determination of blood haemoglobin.
- Determination of serum total protein.
- Determination of serum albumin
- Estimation of serum tocopherol
- Determination of serum ceruloplasmin 47
- Determination of serum copper and zinc. 47
- The estimation of red cell superoxide dismutase activity49
- Assay of red blood cell catalase activity 53
- Determination of total protein in lysate 58
- Statistical analysis.

1	7	7
	٠,	

Results
Discussion 132
Summary 147
References 152
Arabic Summary 182

INTRODUCTION & **AIM OF WORK**

INTRODUCTION

Retinitis pigmentosa is a set of hereditary disorders that diffusely and primarily affect photoreceptor and pigment epithelial function (John, 1988). This disease may progress to loss of visual field and eventually blindness. The retinitis pigmentosa process is found worldwide at an estimated prevalence of about 1:4000 to 1:7500 (Bunker et al., 1984).

Several studies have considered the relationship between abnormalities in serum copper levels and retinitis pigmentosa. However, conflicting data are coming out from different localities. Marceau and Aspin (1973) reported abnormality in serum levels of both copper and zinc in patients with retinitis pigmentosa. Gahlot et al. (1976) reported that serum copper level was within normal. In contrast, Rao et.al.,(1981) reported an elevated level of serum copper in a series of 24 patients with decreased ceruloplasmin levels. These results in general, imply an abnormal copper metabolism in retinitis pigmentosa. Copper and zinc are known to be important co-factors for the free radical scavenging enzymes superoxide dismutase and catalase (Hassan, 1988; Kernell et al., 1992). It appears that a close correlation between each of copper, zinc and the activities of these enzymes. In turn it is believed that free radical can be a factor contributing to the incidence of the retinitis pigmentosa among different individuals. Only one single article was found dealing with the change in superoxide dismutase activity in patients suffering from retinitis pigmentosa (Rosalie and Jerre 1982). They reported a normal level of erythrocyte superoxide dismutase, copper and zinc in retinitis pigmentosa. These findings did not agree with other reported abnormalities in zinc and copper. Thus, the interference of varying etiological factors in the pathogenesis of retinitis pigmentosa still exists.

INTRODUCTION 2

بالمقمد ممد الأنطا

The aim of the present study is to evaluate the possible changes in the activities of free radical scavenging enzymes and levels of serum copper, zinc, ceruloplasmin, vitamin E and total protein in Egyptian patients with retinitis pigmentosa.

The study also includes a comparison between changes that occur in these parameters in humans suffering from retinitis pigmentosa and that which occur in either rats or rabbits exposed to ultraviolet source.

A group of patients suffering from diabetic retinopathy was also included for comparative purposes.

LITERA	ATURE REVIEW
·	

1

The Retina

The retina is a multilayered sheet of neural tissue closely applied to a single layer of pigmented epithelial cells, attached to Bruch's membrane (Fig. 1). It is most thin at the fovea centralis, the center of the macula. The retina is normally transparent, and some of the incident light is reflected at the vitreo retinal interface (Daniel and Taylor, 1980).

It is composed of highly organized delicate tissue consisting of 9-histologic layers. The fovea centralis, which lies about 3.5 mm lateral to the optic disk, is specialized for fine visual discrimination. In the fovea, the receptors are all cones. The outer nuclear layer is thinned. The other paranchymal layers are displaced centrifugally, and the internal limiting membrane is thin. Throughout most of the retina, the axons of the receptor cells pass directly to the inner side of the outer plexiform layer where they connect with dendrites of horizontal and bipolar cells, which extend out ward from the inner nuclear layer. In the macula, however, the receptor cell axons follow an oblique course and are called the Henle fiber layer (Daniel and Taylor, 1980).

The axons of the bipolar cells are connected with a macrine and ganglion cells in the densely woven inner plexiform layer. The long axons of the ganglion cells pass in the nerve fiber layer to the optic nerve.

The retina receives its blood supply from two sources. The choriocapillaris is a single layer of closely spaced capillaries intimately attached to the outer surface of Bruch's membrane. The choriocapillaris supplies the outer third of the retina including the outer plexiform and outer nuclear layers, the photoreceptors, and the pigment epithelium.

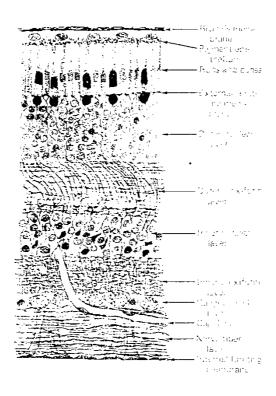


Figure 1: Layers of the retina (Redrawn and reproduced, with permission, from Wolff: Anatomy of the Eye and Orbit, 4th ed. Blakiston-McGraw, 1954)