
AIN SHAMS UNIVERSITY

A THERMODYNAMIC STUDY OF THE SOLUBILIZATION OF ORGANIC COMPOUNDS BY SURFACTANT MICELLES

A DISSERTATION

SUBMITTED TO THE UNIVERSITY COLLEGE FOR GIRLS

IN PARTIAL FULFILMENT
OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

541.342 F. H

BY

FATEN M. ZAKARIA MAHMOUD

(B.Sc., M.Sc.)

1988

A THERMODYNAMIC STUDY OF THE SOLUBILIZATION OF ORGANIC COMPOUNDS BY SURFACTANT MICELLES

Dessertation Advisors

Dr. Sherril D. Christian

Dr. Ahmed A. Taha

Dr. Wafaa S. Hegaz:

Sherril D. Eristian

J. 5. 5. - .

Dr. Esam M. Ezzo

Head of the Chemistry Department

ACKNOWLEDGEMENTS

First, I have appreciated the financial support of the Egyptian government and the Peace Fellow program.

I would like to thank several people who helped me and I have enjoyed working with them. Dr. Subray Bhat, for his invaluable help and advice in the SED work. Dr. George Smith for assisting me in learning the SVP technique and in solving the computer problems facing me during my work. I would also like to thank Jim Sasaki, Abdullateef Haidar and Susan Byrnett who are not only my colleges but also good friends.

I would like to thank Dr. Wafaa Higazy for guiding me. I would like to thank Dr. Ahmed Taha, my Egyptian advisor, for his invaluable help in Egypt and the United States.

I would like to thank Dr. Ed Tucker, who constructed the automatic vapor pressure apparatus which was used in this work, and for helping me during my experiments.

Mainly, I would like to thank Dr. Sherril Christian my research advisor for his help, invaluable suggestion, leadership, encouragement and for everything he has done for me which will never be forgotten.

Table of Contents

I.	INTRODUCTION	1
II.	OBJECTIVES AND APPROACH	10
III.	• EXPERIMENTAL	
	i. Solute Vapor Pressure	13
	ii. Semi-equilibrium Dialysis Method	20
	iii. Chemicals	24
IV.	DATA ANALYSIS	
	i. Solute Vapor Pressure Data	26
	ii. Semi-equilibrium Dialysis Data	36
V.	RESULTS	
	i. SVP Results for Benzene	41
	ii. SVP Results for Cyclohexane	104
	iii. SVP Results for Hexane	138
	iv. SED Results	170
VI.	CONCLUSIONS	194
	REFERENCES	200

LIST OF FIGURES

Representation of the solubilization process indicating	
the locations of different solubilizates.	7
Diagram of the manual version of the solute vapor	
pressure apparatus.	15
Results of calibration of Paroscientific quartz-crystal	
pressure transducer.	17
Schematic diagram of 6-port HPLC valve used on the	
automated vapor pressure apparatus.	18
Representation of the semi-equilibrium dialysis	
experiment.	22
Diagram showing the determination of solubilized organic	
concentration from vapor pressure data.	29
Solubilization constants for benzene in 0.1M CTAB.	50
Activity coefficients for benzene in 0.1M CTAB.	51
Solubilization constants for benzene in 0.3M CTAB.	60
Activity coefficients for benzene in 0.3M CTAB.	61
Solubilization constants for benzene in 0.1M NaL.	66
Activity coefficients for benzene in 0.1M Nal.	67
Solubilization constants for benzene in 0.5M NaL.	74
Activity coefficients for benzene in 0.5M NaL.	75
	Diagram of the manual version of the solute vapor pressure apparatus. Results of calibration of Paroscientific quartz-crystal pressure transducer. Schematic diagram of 6-port HPLC valve used on the automated vapor pressure apparatus. Representation of the semi-equilibrium dialysis experiment. Diagram showing the determination of solubilized organic concentration from vapor pressure data. Solubilization constants for benzene in 0.1M CTAB. Activity coefficients for benzene in 0.3M CTAB. Solubilization constants for benzene in 0.3M CTAB. Solubilization constants for benzene in 0.1M NaL. Activity coefficients for benzene in 0.1M NaL. Solubilization constants for benzene in 0.1M NaL.

15.	Comparison of the activity coefficients for benzene	
	solubilized in 0.1M and 0.5M NaL.	76
16.	Solubilization constants for benzene in NaL and NaCl.	81
17.	Activity coefficients for benzene in NaL and NaCl.	83
18.	Activity coefficients for benzene in Nal and 0.4M NaCl.	84
19.	Solubilization constants for benzene in CTAB and NaBr.	87
20.	Activity coefficients for benzne in CTAB and NaBr.	88
21.	Activity coefficients for benzene in CTAB and 0.4M NaBr.	89
22.	Activity coefficients for benzene in a mixture of CTAB and	
	GAF CO-660.	97
23.	Comparsion of the activity coefficents for benzene in	
	CTAB, CO-660 and mixture of both.	99
24.	Comparsion of the activity coefficients for benzene in	
	NaL, CO-660 and mixture of both.	103
25.	Solubilization constants for cyclohexane in 0.1M CTAB.	108
26.	Activity coefficients for cyclohexane in 0.1M CTAB.	110
27.	Solubilization constants for cyclohexane in 0.1M NaL.	116
28.	Activity coefficients for cyclohexane in 0.1M NaL.	117
29.	Solubilization constants for cyclohexane in 0.5M NaL.	122
30.	Activity coefficients for cyclohexane in 0.5M NaL.	123
31.	Comparison of the activity coefficients for cyclohexane in NaL.	124
32.	Comparison of the core to total volume ratio for spherical and	
	rod shaped micelles.	126
33.	Activity coefficients for cyclohexane in NaL and NaCl.	128
34.	Activity coefficients for cyclohexane in CTAB and NaBr.	132

35	 Activity coefficients for cyclohexane in a mixture of CTAB and 	
	GAF CO-660.	136
36.	· Activity coefficients for cyclohexane in a mixture of NaL and	
	GAF CO-660.	137
37.	. Solubilization constants for hexane in 0.1M CTAB.	143
38.		144
39.		149
40.		150
41.		155
42.		157
43.		158
44.		163
45.		164
46.	Activity coefficients for hexane in a mixture of NaL and	167
	GAF CO-660.	167
47.	Activity coefficients for hexane in a mixture of CTAB and	
	GAF CO-660.	168
48.	Solubilization constants for benzoic acid in CPC.	179
49.		180
50.	Solubilization constants for hydrocinnamic acid in CPC.	181
51.	·	183
52.	Activity coefficients for phenylacetic acid in CPC.	
53.	Activity coefficients for hydrocinnamic acid in CPC.	184 185
54.	Solubilization constants for benzyl alcohol in CPC.	188
55.		189
		_ ~ /

LIST OF TABLES

1.	Derived constants for benzene studied using the solute	
	vapor pressure method.	43
2.	Results for benzene in 0.1M CTAB at 35 C.	46
3.	Results for benzene in 0.1M CTAB at 45 C.	4.8
4.	Results for benzene in 0.3M CTAB at 35 C.	54
5.	Results for benzene in 0.3M CTAB at 45 C.	57
6.	Results for benzene in 0.1M NaL at 25 C.	6.3
7.	Results for benzene in 0.1% NaL at 35 C.	64
8.	Results for benzene in 0.1M NaL at 45 C.	6.5
9.	Results for benzene in 0.5M NaL at 35 C.	70
10.	Results for benzene in 0.5M NaL at 45 C.	72
11.	Results for benzene in NaL containing 0.1M NaCl at 35 C.	79
12.	Results for benzene in NaL containing 0.4M NaCl at 45 C.	80
13.	Results for benzene in CTAB containing 0.1M NaBr at 35 C.	85
14.	Results for benzene in CTAB containing 0.4M NaBr at 45 C.	86
15.	Results for benzene in CTAB and CO-660 at 25 C.	91
16.	Results for benzene in CTAB and CO-660 at 35 C.	93
17.	Results for benzene in CTAB and CO-660 at 45 C.	95
18.	Results for benzene in NaL and CO-660 at 35 C.	100
9.	Results for benzene in NaL and CO+660 at 35 C.	101

20). Derived constants for cyclohexane studied using solute vapor	
	Pressure method.	105
21	. Results for cyclohexane in 0.1M CTAB at 35 C.	
22		106
23		107
24		113
25.		114
26,		115
27.	Results for cyclohexane in 0.5M NaL at 35 C.	11 9
28.	tor cyclonexane in 0.5M NaL at 45 C.	120
29.	101 Cyclonexane in D.IM NaL and NaCl at 35 C.	127
30.	or the Cyclonexane in 0.1M CTAB and NaBr at 35 C.	131
	of CTAB and GAF CO-660.	134
31.	of Nal and GAF CO-660.	135
32.	served constants for nexame studied using solute vapor	
	pressure method.	139
33.	Results for hexane in 0.1M CTAB at 35 C.	140
34.	Results for hexane in 0.1M CTAB at 45 C.	141
35.	Results for hexane in 0.1M NaL at 25 C.	146
36.	Results for hexane in 0.1M NaL at 35 C.	147
37.	Results for hexane in 0.1M NaL at 45 C.	
38.	Results for hexane in 0.5M NaL at 35 C.	148
39.	Results for hexane in 0.5M NaL at 45 C.	151
	Results for hexane in 0.1M NaL and NaCl at 35 C.	153
	Results for hexane in 0.1M CTAB and NaBr at 35 C.	159
	Results for hexane in a mixture of CTAB and GAF CO-660 at 35 C	160
	and GAF CO-660 at 35 C	165

43.	Results for hexane in a mixture of NaL and GAF CO-660 at 35 C.	166
44.	Results for benzoic acid in CPC at 25 C.	172
45.	Results for phenylacetic acid in CPC at 25 C.	175
46.	Results for hydrocinnamic acid in CPC at 25 C.	176
47.	Least squares parameter for carboxylic acids studied.	177
48.	Results for benzyl alcohol in CPC at 25 C.	187
49.	Limiting values of K for various aromatic compounds in CPC.	190
50.	Limiting values of K for various aliphatic compounds in CPC.	191
51.	Thermodynamic quantities derived for solubilized organic in CTA	3
	and in NaL.	196

A THERMODYNAMIC STUDY OF THE SOLUBILIZATION OF ORGANIC COMPOUNDS BY SURFACTANT MICELLES

CHAPTER I

INTRODUCTION

A surfactant or a surface active agent is a substance that, when present at low concentration in a system, has the property of adsorbing onto the surfaces or interfaces of the system.

Surfactants can be used in a variety of fields, for example in detergency, wastewater treatment and purification, enhanced oil recovery and applications of novel separations methods in biotechnology. The study of thermodynamics of systems containing surfactant mixtures is also an area of fundamental interest.

A surfactant molecule has a characteristic structure, known as the amphip athic structure, which consists of a hydrophobic group (long chain hydrocarbon) and hydrophilic group (polar group). In a dilute solution, the surfactant exists as monomer species, then it starts to aggregate, forming micelles, at higher concentrations. The

concentration at which the surfactant starts to form micelles is known as the critical micelle concentration (CMC). In an aqueous solution of a surfactant, the presence of hydrophobic groups causes distortion of the water structure, increasing the tendency of these groups to move out of the aqueous environment. Accordingly, the surfactant molecules tend to concentrate at the surface. On the other hand, the presence of the hydrophilic groups prevents the surfactant from being expelled completely from the solvent as a separate phase. This amphipathic structure of the surfactant causes not only accumulation of the surfactant at the surface, but also causes the molecules to orient at the surface, with their hydrophilic groups toward the bulk aqueous solution and the hydrophobic groups toward the interior of the micelle, thus forming a liquid hydrocarbon-like environment (1).

Although the question of the micellar shapes is still not completely settled, more information is available about micellar aggregation numbers. Light scattering is frequently used to determine aggregation numbers (2). They can also be obtained from sedimentation rates in the ultracentrifuge (3). As a rule, in aqueous medium, the greater the dissimilarity between the surfactant and solvent, the greater the aggregation number. Thus in aqueous solutions, increasing the hydrophobic character of the surfactant increases the aggregation number. This can be achieved by increasing the length of the hydrophobic group in ionics or nonionics, and increasing the binding of the counterions to the micelle in ionic surfactants. The addition of an electrolyte to the aqueous solution of ionic surfactant

increases the aggregation number. The effect is not always in this direction in the case of nonionic surfactants. By increasing the temperature, there tends to be a small decrease in the aggregation number of ionic surfactants in aqueous medium. However, in the case of nonionic surfactants, an increase in temperature ordinarily causes a large increase in the aggregation number. The solution begins to show turbidity and then separates into two phases. This phase separation owes to the increase in micellar size (4). The lowest temperature at which clouding occurs is called the "cloud point".

The shape of the micelle depends on the total concentration of the surfactant solution (5). In dilute solutions, micelles can be considered to be roughly spherical. In concentrated solutions, micelles become larger with a reduced surface area per molecule. These structures are non-spherical, often becoming rod or disk shaped. In some cases, surfactant micelles take the form of parallel sheets, or long cylinders packed together and surrounded by solvent (6).

There are two main types of surfactants, ionic and nonionic.

Ionic surfactants, which are more common, are divided into three classes depending on the nature of the hydrophilic group:

- anionic surfactants with a negative charge on the hydrophilic head groups, e.g. sodium laurate (NaL) and sodium dodecylsulfate (SDS);
- cationic <u>surfactants</u> having a positive charge at the hydrophilic head group, e.g. hexadecylpyridinium chloride (also known as cetyl

pyridinium chloride, CPC) and hexadecyltrimethylammonium bromide (CTAB); and

3. <u>zwitterionic surfactants</u> which possess both positive and negative charges on the same molecule and may behave as either cationic or anionic surfactants depending on the pH of the solution, e.g. long chain amino acids.

The nonionic surfactants are neutral molecules with polar hydrophilic groups, e.g. polydisperse nonylphenoxypolyoxyethylene ethanol (GAF CO-660).

Many factors affect the CMC in aqueous solutions: mainly the structure of the surfactant (1,5,7), the presence of an added electrolyte (8), and the temperature of the solution (9). Generally, anionic surfactants have relatively large CMC values compared with cationic surfactants. Nonionic surfactants usually have low CMC values.

Solubilization is one of the most important phenomena exhibited by surfactant solutions which form micelles. Solubilization may be defined as the spontaneous dissolving of a substance (solid, liquid or gas) by reversible interaction with the micelle of a surfactant in a solvent, to form a thermodynamically stable isotropic solution with reduced thermodynamic activity of the solubilized compound. These solubilized compounds are often solvent-insoluble or sparingly-soluble materials. Thus, the importance of the solubilization phenomenon is that it allows substances to dissolve in solvents in which they are normally insoluble or slightly soluble (10). The increased solubility