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A THERMODYNAMIC STUDY OF THE SOLUBILIZATION
OF ORGANIC COMPOUNDS BY

SURFACTANT MICELLES

CHAPTER I

INTRODUCTION

A surfactant or a surface active agent i1s 2 substance that, when
Present ar low concentration in a system, has the proper:v of
adsorbing onto the surfaces or interfaces of the system.

Surfactants can be used in a variety of fields, for example in
detergency, wastewater treatment and purification, enhanced oil
recovery and applications of novel separations methods in
biotechnology. The study of thermodynamics of svstems containing
surfactant mixtures is also an area of fundamenral interest.

A surfactant molecule has a characteristic structure, known as
the amphip athic structure, which consists of a hydrophobic group
{long chain hydrocarbon) and hydrophilic group (peclar group). In a
dilute solution, the surfactant exists as nonomer species, then it

8Larts to aggregare, forming micelles, at higher concentrations. The

[
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concentration at which the surfactant starts to form micelles is known
as the critical micelle concentration (CMC). In an aqueous solution of
a2 surfactant, the presence of hydrophobic groups causes distortion of
the water structure, increasing the tendency of these groups to move
out of the aqueous environment. Accordingly, the surfactant molecules
tend to concentrate at the surface. On the other hand, the presence of
the hydrophilic groups prevents the surfactant from being expelled
completely from the solvent as & Seéparate phase. This amphipathic
structure of the surfactant causes not only accumulation of the
surfactant at the surface, but also causes the molecules to orient at
the surface, with their hydrophilie groups toward the bulk aqueous
solution and the hydrophobic groups toward the interior of the
micelle, thus forming a liquid hydrocarbon-like environment (1).
Altheugh the question of the micellar shapes is still not
completely settled, more informarion is available about micellar
aggregation numbers. Light scattering is frequently used to determine
aggregation numbers (2). They can also be obtained from sedimentation
rates in the ultracentrifuge (3). 4s a rule, in aqueous medium, the
greater the dissimilarity between the surfactant and sclvent, the
greater the aggregation number. Thus in aqueous solutions, increasing
the hydrophobic character of the surfactant increases the aggregation
nunber. This can be achieved by increasing the length of the
hydrophobic group 1in ionics or nonionics, and increasing the binding
of the counterions to the micelle in ionic surfactants. The addition

of an electrolyte t» the a2queous  solution of ioniz surfactant
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(¥3)

increases the aggregation number. The effact is not always in this
direction in the case of nonionic surfactants. By increasing the
temperature, there tends to be a small decrease in the aggregation
nunber of ionic surfactants in agqueous medium. However, in the case of
nonionic surfactants, arn increase in temperature ordinarily caugses a
large increase in the aggregation number. The solution begins to show
turbidity and then separates into two phases. This phase separation
owes o the increase in micellar size (4). The lowest temperature at
which clouding occurs is called the "eloud point'.
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the surfactant solution {5). In ¢ilete solutions, micelles can be
considered to be <roughly spherical. In concentrared sclutions,
micelles become larger with a reduced surface area per molecule. These
structures are nen-spherical, often becening rod or disk shaped. In
some cases, surfactant micelles take the ‘orm of parallel sheets, or
long cylinders packed together and surrounded by solvent (6).

There are two main types of surfactants, icnic and nonionic.

lonic surfactants, which are more common, are divided into three

classes depending on the nature of the hydrophitic group:

i. anionic surfactants with a negative charge on the hvdrophilic head

groups, e.g. sodium laurate (Kzl) and sodium dodecylsulfate {SDS):

2. cationic surfactants having a positive charge at rhe hydrophilic

head group, e.g. hexadecylpyridinium shloride (also known as cety

[
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pyridinium chloride, CPC) and hexadecyltrimethylammonium bromide
{CTAB); and

3. zwirterionic surfactants which possess both positive and negarive

charges on the same molecule and may behave as either cationic or
anionic surfactants depending on the pH of the solution, e.g. long
chain amino acids.
The nonionic surfactants are neutral molecules with polar hydrophilic
groups, e.g. polydisperse nony lphenoxypolvoxyethylene ethanol (GAF
Co-660).

Many Iactors affect the CMC in aquecus sclutions: mainly the
structure of the surfactant (1,5,7), the presence of an added
electrelyte (8), and the temperature of the solution (9). Generallv,
anionic surfactants have relatively large CMC values compared with
cationie surfactants. Xonionic surfacrants usuaily have low CMC
values.

Sclubilization is one of the most important phenomena exhibited
by surfactant solutions which form micelles. Solubilization may be
defined as the spontaneous dissolving of a substance (solid, liquid or
gas) by reversible intreracrion with the micelle of a surfactant in a
solvent, to form a thermodynamically stable isotropic solution with
reduced thermodynamic activity of the solubilized compound. These
solubilized compounds are often solvent-inscluble or sparingly-soluble
materials. Thus, rhe importance of the solubilization phenomenon is
that it allows substances to dissolve in solvents in which thev are

normaliy insoluble cor slightly soluble (130). The increased solubility

Central Library - Ain Shams University



