EVALUATION OF BONE METABOLISM IN RICKETS A NEW APPROACH

Thesis

Submitted for partial fulfillment of master degree in pediatrics

Bv

Dr. Abeer Raafat Shawky Abd El-Hameed

M.B.Bch Ain Shams University

Supervisors

Prof. Dr. Sanaa Youssef Shaaban

Professor of Pediatrics

Faculty of Medicine - Ain Shams University

Dr. Omnia Fathey El-Rasheidy

Lecturer of Pediatrics

Faculty of Medicine - Ain Shams University

Dr. Perihan Hamdy Tawfik

Lecturer of Clinical Pathology

Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 1998

THE BRE BRE STO

Dedication

Dedicated to

My mother

8

My husband

🖁 Acknowledgment 🖁

First and foremost thanks are to GOD

I wish to express my deep appreciation to **prof. Dr.** Sanaa Youssef Shaaban, Professor of Pediatrics, Ain Shams University, for giving me the privilege of working under her instructive and helpful guidance.

I also express my deep thanks and sincere gratitude to Dr. Omnia Fathy El-Rasheidy, lecturer of pediatrics, Ain Shams University for her generous co-operation, continuous advice and keen supervision.

Particular thanks to Dr. Perihan Hamdy Tawfik lecturer of clinical pathology Ain Shams University for her keen supervision and faithful guidance.

I extend thanks to my patients and to every one in the department of radiodiagnosis in pediatrics Hospital, Ain Shams University.

I am indebted to all my family, my colleagues and to everyone who participated in some way or another to make the completion of this work possible.

g Contents Z

* List of abbreviations
* List of tables
* List of figures
* Introduction and aim of the work
* Review of literature
I- Vitamin D
- History
- Chemistry of vitamin D.
- Types of vitamin D
- Sources of vitamin D.
- Metabolism of vitamin D.
- Physiological actions of vitamin D.
- Endocrine control of vitamin D.
II - Rickets
- Definition
- Epidemiology
- Classification
- Vitamin D deficiency rickets
- Etiology
- Pathology
- Clinical manifestations.
- Roentogenographic changes
- Complications
- Prevention
- Diagnosis
- Treatment
III - Bone metabolism
- Bone structure
- Ceilular elements

Contents	В
- Non cellular elements	50
- Biosynthesis of collagen	51
- Types of bone	54
- Bone turnover	57
- Bone formation	57
- Mechanism of bone formation	57
- Factors regulating bone formation.	59
- Biochemical markers of bone formation	59
- PICP, a new marker of bone formation	62
- Bone resorption	64
- Mechanism of bone resorption	64
- Factors regulating bone resorption	64
- Biochemical markers of bone resorption	66
- ICTP, a new marker of bone resorption	67
* Subjects and Methods	72
v	
* Results	80
* Discussion	104
* Summary and Conclusion	112
Summary and Concresion	
* Recommendations	115
Accommendations	
* Appendix	116
Appendix	
* References	122
^ Keierences	1 44 44
6 A 7 .	
* Arabic summary	

\$ List of abbreviations \$

ALP : Alkaline phosphatase.

: Bone Gla protein. **BGP** ${}^{0}C$: Degree centigrade.

: Total calcium. Car

Cap. : Capsule.

: Vitamin D binding protein. **DBP** $1,25(OH)_2D_3$: 1,25 dihydroxy vitamin D_3 **24,25(OH)**₂**D**₃: 24,25 dihydroxy vitamin D₃. **25,26(OH)**₂**D**₃ : 25,26 dihydroxy vitamin D_3

: Enzyme linked immunosorbent assav. **ELISA**

: Figure. Fig. : gram. g.

HPLC : High performance liquid chromatography.

: Hour. hr.

: Highly significant. H.S. : 25 hydroxy vitamin D₃. 25 (OH) D₃

: Type I collagen carboxy terminal telopeptide. **ICTP**

: International unit / Liter. IU/L : International unit /milliliter. IU/ml : International unit / tablets. IU/tab

mcg/cap : Microgram / capsule.

: Magnesium. . Mg

: Milligram per kilogram. mg/kg Matrix Gla protein MGP

: Minute. Min.

∠ mm³ : Cubic millimeter. ng/ml : nanogram / milliliter.

OB : Osteoblast : Osteoclast \mathbf{OC} % : Percent.

Pi Inorganic phosphorus. PICP : Procollagen carboxy-terminal propeptide of type I

collagen.

PTH: Parathyroid hormone.
RIA: Radioimmunoassay.

S. : Significant.

S.D. : Standard deviation.

TSH: Thyroid stimulating hormone.

VDR: Vitamin D receptor.

Wt. : Weight.

E List of tables

		Page
Table (1)	: Vitamin D contents of common foods	6
Table (2)	: Vitamin D medicaments	6
Table (3)	: Vitamin D and its metabolites	11
Table (4)	: Vitamin D receptors	13
Table (5)	: Stages of nutritional rickets	28
Table (6)	: Clinical variants of rickets and related conditions.	44
Table (7)	: Characteristics proteins and enzymes of bone	55
Table (8)	: Growth factors and bone	5 6
Table (9)	: Comparison of mean and S.D. of age, wt and	
	length between group I and group II	84
Table (10)	: The presenting symptomes and clinical signs of	
	the studied cases	86
Table (11)	: Complications of the studied cases	86
Table (12)	: Comparison between mean of serum calcium,	
	phosphorus and alkaline phosphatase in group I	
	and group II	87
Table (13)	: Comparison between mean of serum PICP and	
	serum ICTP in group I and group II	90
Table (14)	: Comparison between mean of serum calcium,	
	phosphorus, alkaline phosphatase, PICP and	
	ICTP in patients with pallor and patients with no	
	pallor	93
Table (15)	: Correlation study between PICP and ALP in	
	group I	98
Table (16)	: Correlation study between ICTP and Ca, P and	
	ALP	99
Table (17)	: Personal history of group I	116
Table (18)	: General examination of group I	11
Table (19)	: Laboratory data of group I	118
Table (20)	: Personal history of group II	119

List of tables		iv
Table (21)	: General examination of group II	119
` /	: Laboratory data of group II	

[&]quot;Evaluation of bone metabolism in rickets" a new approach

g List of figures Z

		Page
Figure (I)	: Chemistry of vitamin D	3
Figure (II)	: Metabolism and action of vitamin D	10
Figure (III)	: Mechanism of action of vitamin D	12
Figure (IV)	: Factors regulating vitamin D.	18
Figure (V)	: Histological and pathological appearance of the	
	epiphysial plate	27
Figure (VI)	: Skeletal deformities common in rickets	30
Figure (VII)	: X-ray of wrist joint showing active rickets	32
Figure (VIII)	: X-ray of wrist joint showing healing rickets	33
Figure (IX)	: X-ray of wrist joint showing healed rickets	33
Figure (X)	: Origins and fates of the cells of mature bone	46
Figure (XI)	: A schematic diagram showing the major steps in	
	collagen synthesis	53
Figure (XII)	: Electron micrograph of matrix vesicle	58
Figure (XIII)	: Type I procollagen	63
Figure (XIV)	: Sites of pyridinoline cross-linking in type I	(0
T70 (4)	collagen fibrils.	69
Figure (1)	: Sex distribution among the studied groups	83
Figure (2)	: Comparison of mean and S.D. of age, wt and	0.5
	length between group I and group II	85
Figure (3)	: Comparison between mean of serum calcium and	
	phosphorus in group I and group II	88
Figure (4)	: Comparison between mean of serum alkaline	
	phosphatase in group I and group II	89
Figure (5)	: Comparison between mean of serum PICP in	
	group I and group II	91
Figure (6)	: Comparison between mean of serum ICTP in	
	group I and group II	92
Figure (7)	: Comparison between mean of serum calcium and	
	phosphorus in patients with pallor and patients	
	with no pallor	94

Figure (8)		95
Figure (9)	: Comparison between mean of serum PICP in patients with pallor and patients with no pallor	96
Figure (10)	: Comparison between mean of serum ICTP in patients with pallor and patients with no pallor	97
Figure (11)	: Correlation study between PICP and ALP in group I	98
Figure (12)	: Correlation study between ICTP and ALP in group I	100
Figure (13)	: Correlation study between ICTP and serum calcium in group I	101
Figure (14)	: Correlation study between ICTP and serum phosphorus in group I	

§ Abstract Z

Type I collagen is synthesized by osteoblasts and accounts for about 90% of the organic matrix of bone. We have used a new specific immunoassay for the measurement of carboxy-terminal propeptide of type I procollagen (PICP) and cross linked carboxy-terminal telopeptide of type I collagen (ICTP) which allow assessment of formation and degradation of type I collagen respectively. Thirty one patients having active rickets were investigated for their serum calcium, phosphorus, alkaline phosphatase, PICP and ICTP.

The whole group of patients showed a highly significant decrease in their total calcium and phosphorus levels (P <0.001). A highly statistical significant increase in their serum alkaline phosphatase, PICP and ICTP levels (P < 0.001) in comparison to the control group which included ten patients. A positive correlation was also found between alkaline phosphatase and both PICP and ICTP. We concluded that PICP and ICTP are specific biochemical markers of bone formation and bone degradation respectively. They are of great value to identify patients with increase bone turnover as in rachitic patients.

Introduction and
Aim of the work