AIN SHAMS UNIVERSITY
FACULTY OF ENGINEERING
ELECTRONICS AND COMMUNICATION ENGINEERING DEPT.

DESIGN AND PERFORMANCE ANALYSIS FOR PHOTOVOLTAIC SYSTEMS AT REMOTE EGYPTIAN SITES

Ву

Ahmed Ahmed Attia Sayedahmed

B.Sc. in Electrical Engineering

A Thesis

Submitted in Partial Fulfiliment for the

Requirement of the Degree of Master of

Science in Electrical Engineering

621.31244 A. A

Supervised By

Prof.Dr. HANY FIKRY MOHAMED RAGAIE

Faculty of Engineering
Ain Shams University

Dr. MOHAMED AFIFI EL-KOOSY

Military Technial College

CAIRO 1993

EXAMINER COMMITTEE

SIGNATURE

1. Prof. Dr. Mohamed Marzouk Ibrahim

Chief of Electronics and Communication

Engineering Dept.

Faculty of Engineering, Ain Shams University

- 2. Prof. Dr. Sirag El-Din Sayed Habib Professor of Electronics.
 Faculty of Engineering, Cairo University
- 3. Prof. Dr. Hany Fikry Mohamed Ragaie

 Faculty of Engineering, Ain Shams University
- 4. Dr. Mohamed Afifi El-Koosy
 Military Technical College.

Date: / /1992

STATEMENT

من بن اللحاء عمل بما عالم المعاددة الأسفاء الأسماليا عالية المحاددة الأسفاء الأسماليا عالية الأسماليا الأساء ا

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried out by the author in the Armed Forces from Dec. 14, 1987 to......

No part of this thesis has been submitted for a degree or a qualification at any other University of Institute.

Date:

Signature: Ahmid Atta

Name: Ahmed Ahmed Attia

ACKNOWLEDGEMENT

المائف المنامم وتدها

I am deeply indebted to Prof. Dr. MOHAMED NABIL SALEH
Dean of the Faculty of Engineering, Ain Shams University,
who was always willing to help, encourage and provide with
his wise councel and his many years of experience. I am very
grateful to him for his good-natured patience and
professional attitude.

I would like to express my deep appreciation to Prof. Dr. HANY FIKRY RAGAIE for his outstanding contribution and intelligent remarks. His encouragement and permanent support have helped greatly in making this work, I hope, fruitful. He spared no effort in giving advice whenever needed.

To Dr. MOHAMED EL-KOOSY, Words fail to express what is to be said about his contribution to this work. For him, I pay my sincerest thanks. His patience, helpful discussions, valuable suggestions and endless assistance have brought up this thesis the way it is.

Ain Shams University

Faculty of Engineering

Electronics & Comm. Engineering Dept.

Abstract of M.Sc. Thesis in Electrical Engineering Submitted by: Ahmed Ahmed Attia Sayedahmed Title of thesis:

Design and Performance Analysis for Photovoltaic Systems at Remote Egyptian Sites.

Supervisors:

- (1) Prof. Dr. Hany Fikry Mohamed Ragaie
- (2) Dr. Mohamed Afifi El-Koosy

Registration date: 14/12/1987 Examination date:

ABSTRACT

This work presents an improvement to the methods previously developed for sizing optimal stand alone photovoltaic (PV) systems. The design approach utilizes the loss of load probability concept to quantify and analyse the overall behaviour of the PV system. The described algorithm enables the designer to determine the components of the system that correspond to minimum life cycle costs at certain prescribed power availability. The developed method is applied for sizing a stand alone PV system that supplies electrical power in a typical remote site chosen on the North Western Egyptian coast. The obtained results are discussed and compared with those obtained on applying the existing methods.

A Comprehensive economic study for the designed system is presented. The study includes the utilization of locally manufactured lead acid batteries which, throughout the presented work, are tested and modelled to be used in PV applications. The cost of energy produced in remote sites by alternative sources (diesel or electrical grid extension) are estimated and compared.

CONTENTS

	PAGE
INTRODUCTION	1
CHAPTER 1: SOLAR CELLS: OPERATION CHARACTERIZATION AND	
TECHNOLOGY	
1.1 Solar Cell Operation	5
1.2 Ideal Solar-Cell Current-Voltage Characteristics	10
1.3 Solar Cell Parameters	21
1.3.1 Short circuit current (I _{sc})	21
1.3.2 Open circuit voltage (Voc)	22
1.3.3 Maximum power and fill factor	24
1.3.4 Cell efficiency	27
1.3.5 Solar cell spectral response	27
CHAPTER 2: STORAGE BATTERIES AND ELECTRONIC SYSTEM	
COMPONENTS	
2.1 Storage Batteries	30
2.1.1 Role of storage batteries	30
2.1.1.1 Power buffer between the array and	
loads	30
2.1.1.2 Energy storage	32
2.1.2 PV battery duty cycle	33
2.1.3 Types of batteries for PV applications	37
2 1 4 The operating principles of lead acid calls	30

	2.1.4.1 Discharge process	40
	2.1.4.2 Charging process	42
	2.1.5 Modelling and analysis of locally	
	manufactured lead acid batteries for PV	
	applications	46
	2.1.5.1 Introduction	46
	2.1.5.2 The voltage-current-state of charge	
	model	47
2.2	Electronic Components of PV System	57
	2.2.1 Introduction	57
	2.2.2 Battery charge regulator (BCR)	59
CHAI	PTER 3: PHOTOVOLTAIC SYSTEM SIZING	
3.1	Introduction	60
3.2	Loss-Of-Load Probability	62
3.3	Sizing Technique For Stand-Alone PV Power Systems:	
	Algorithm Implementation and Application	65
	3.3.1 Main features of the developed algorithm	65
	3.3.2 Description of the methodology	66
	3.3.2.1 Determination of the optimum tilt	
	angle	70
	3.3.2.2 Obtaining minimum and maximum values	
	of design insolation	70
	3.3.2.3 Calculation of daily and hourly	
	tilted insolation values	71
	3.3.2.4 Calculation of LOLP	76

3.3.2.5 Calculation of the system life cycle	
cost	77
3.4 Results and Discussions	79
3.4.1 Introduction	79
3.4.2 Site and load characteristics	80
3.4.3 Results of the sizing technique	82
3.4.4 Simplified graphical method for stand-alone	
PV power systems sizing	91
3.4.5 Comparison between the developed technique	
and other sizing techniques	106
CHAPTER 4: ECONOMIC EVALUATION OF PV ENERGY COSTS.	
4.1 Introduction	11:
4.2 PV System	118
4.3 Diesel Generator System	128
4.4 Electrical Grid Extension	133
4.5 Results and Discussions	135
4.6 Conclusion	138
CONCLUSION	141
REFERENCES	144
ADDENDIV A	

INTRODUCTION

هرين دي هرين هرين هرين دي هرين

INTRODUCTION

- 1 -

The significance of renewable energy sources has grown steadily since the last few years during the discussion of our future energy supplies. Public awareness has been awaken to the dangers of global climatic changes caused by burning fossil fuels as well as the limited nature of energy resources present in our environment. On the other hand, searching for a clean form of energy is becoming an essential demand facing the problem of pollution on the earth's crust. Therefore, great hopes have been attached to the increased use of renewable energy sources.

Photovoltaics (the technology of converting sunlight directly into electrical energy) represents one of the most versatile utilization methods and still possesses a high potential for further technical development.

Stand alone PV systems installed at remote sites have proved itself to be not only more convenient, but also the more economical solution. Their applications include vaccine refrigeration, telecommunication, water pumping and lighting.

As a renewable energy source, the PV system offer the following advantages:

- inexhaustible and free energy supplies.
- long system lifetime.
- no noise or other pollution.
- modular construction.

However, a number of important issues including cost, land area requirements, utility grid comparability, solar resource intermittency and storage will influence the rate and degree of PV market penetration.

Our work is concerned with the design and analysis of a small stand alone PV system supplies power to a typical remote Egyptian site. We address the problem of matching the load requirements with the mostly stochastic characteristics of incident solar radiation that is a fundamental problem facing system designers, and results in oversized and costly systems.

The principle of PV energy conversion is outlined in chapter one. Solar cell parameters, solar arrays and fabrication technology of solar cells and their encapsulation into modules and the associated cost are presented.

In the second chapter, the individual system components are described. A locally manufactured lead acid battery type

is experimentally tested. Its performance is measured in the cases of charging and discharging for a long period of time.

A mathematical model that describes battery charging and discharging modes is developed and analysed.

- 3 -

Chapter three presents two developed techniques for the design of stand alone PV system, one of them depends on the use of computer programs and the other depends on a set of curves that match the nature of Egyptian climates.

The different factors that must be taken into consideration in sizing the PV system are presented. The load demand is specified to correspond to an actual load supplied by PV energy at a remote site near Mersa Matruh on the Egyptian Western desert. The sizing methodology is explained so as to obtain the system size that cover the load requirements while ensuring a certain degree of reliability with the minimum life cycle cost. The results of the developed algorithms together with the results of other sizing methods are compared and discussed.

In the fourth chapter, an economic analysis is conducted to calculate the cost of energy produced from the PV system that has been designed considering the incorporation of the examined local batteries and comparing the results with the installed systems using imported solar

- 4 -

batteries. The chapter also includes an economic study that identifies the best energy choice (PV-diesel-grid) to be used to feed different load demands at remote sites.

In the end, the conclusion and recommendations for future work are presented.

CHAPTER "1"