

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص Cairo University
Faculty of Science
Botany Department

PHYSIOLOGICAL AND BIOCHEMICAL STUDIES ON CONJUNCTIVITIS CAUSED BY MICROORGANISMS

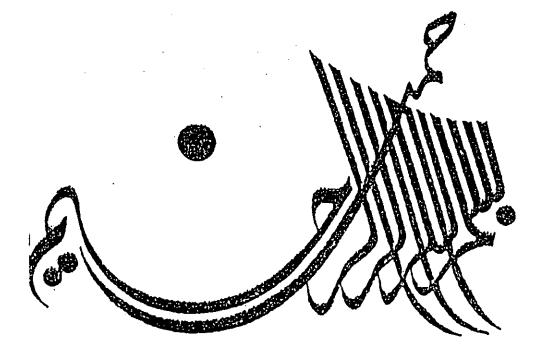
THESIS
Submitted for Partial Fulfillment of the Master Degree
In "Microbiology"

By Sherin M. Ashraf Sharaf

B.Sc. In Botany (Microbiology - Chemistry) (1992)

Supervised By

Dr. Mohamed Ibrahim Ahmed Ali


Dr. Zeinab M. Hassan Kheiralla

Professor of Microbiology Botany Department – Faculty of Science Cairo University Professor of Microbiology
Botany Department – Faculty of Girls
For Arts, Science and Education
Ain Shams University

Cairo University Faculty of Science Botany Department

BYTE

2001

عَالِهُ الْمِنْ الْمُعَالِمُ الْمُعَالِمُ الْمُعَالِمُ الْمُعَالِمُ الْمُعَالِمُ الْمُعَالِمُ الْمُعَالِمُ الْم متناسبن

ACKNOWLEDGMENT

"I DO THANK ALLAH FOR GIFTS WHICH HAVE GIVEN ME"

I am glad to have this opportunity to express my deepest appreciation and sincere gratitude to **Dr. Mohamed Ibrahim Ahmed Ali** Professor of Microbiology, Botany Department, Faculty of Science, Cairo University, for his kind help in suggesting and supervising this work and his encouragement, help and revising the whole manuscript.

I wish to express my great thanks and gratitude to **Dr. Zeinab M. Hassan Kheiralla**, Professor of Microbiology, Botany Department, Faculty of girls for Arts, Science and Education, Ain Shams University, for her supervision, generous guidance throughout the course of this investigation and her valuable help.

Sincere thanks are also due to **Dr. Mohamed M. Sherif**, Professor and Head of Microbiology Department, Faculty of Medicine, Al-Azhar University for his kind help and for all facilities offered to accomplish this study.

I would also take pleasure to thanks all stuff members of botany Department, Faculty of Science, of both Cairo and Ain Shams Universities for their encouragement and all who given hand in any way through this investigation.

My deepest thanks to all stuff members of the Department of Ophthalmology, faculty of Medicine, Al-Azhar University for their kind helps during collection of specimens.

Finally, I would like to express my appreciation and gratitude to my parents, husband, brother and my sister for their moral support and encouragement.

Sherin M. Ashraf

Physiological and Biochemical Studies on Conjunctivitis Caused by Microorganisms

Abstract

In this work, we studied 214 microbial conjunctivitis cases throughout one year from April 1998 to May 1999, in four seasons by different age groups and sex. The protocol of the work included physiological and biochemical analysis on the isolated microorganisms.

The isolated microorganisms (bacteria, fungi and chlamydia) from 214 cases were compared with 50 normal control and identified. The tear IgA and the tear lysozyme in both microbial conjunctivitis cases and control were studied. Also enzymes activities and sensitivity test for all isolated microorganisms towards some antibiotics were tried.

Staphylococcus and Streptococcus species were the most predominant bacterial isolates where Aspergillus and Penicilium species were the most common fungal isolates. Chlamydia trachomatis was isolated as a causative agent of trachoma and paratrachoma chlamydia (PTDs).

Females were more susceptible to infection than males, similarly adult group 30-50, and children groups. The reached results showed that spring and summer seasons had the highly infectious rate throughout the year. Also antibacterial and antifungal sensitivity test were done for all isolates, where amikacin, ciprofloxcin, gentamycin and ofloxacin showed the highest inhibitory effect against all tested bacteria. And clotrimazole (1%) and ketoconazole (2%) were effective against all tested fungal and yeast species.

The rate of tear IgA were affected by microbial infection than tear lysozyme. Finally most of the isolated bacterial and fungal species have the ability to produce protease and lipase enzymes.

Key Words:- Conjunctivitis, bacteria, fungi and yeast, chlamydia. Tear IgA and lysozyme. Enzymes. Protease, lipase. Antibacterial, Antifungal.

CONTENTS

	Page
- Abstract	
- Introduction	1
- Review of Literature	
I. Anatomy of the conjunctiva	3
II. the normal flora of the eye	3
1. Bacteria	3 5
2. Fungi	6
3. Chlamydia	7
III. Prevalence of microorganisms of the conjunctiva in Egypt	9
IV. Immunity of the eye	14
1. Mechanical barriers	14
2. Physical factors	15
3. Specific immune response mechanisms	15
V. Factors affecting the conjunctival flora	15
VI. Infections of the eye	16
1. Bacterial conjunctivitis.	16
2. Fungal conjunctivitis	21
3. Chlamydial conjunctivitis	27
4. Immunological disease of eye	29
VII. Antimicrobial agents	30
1. Antibacterial agents	30
2. Antifungal agents	34
VIII. Ocular host defense mechanisms	42
1. Ocular fluids	42
IX. Enzyme production	45
1. Protease	46
2. Lipase	47
- Materials and Methods	
I. Specimen collection	49
II. Media used for isolation and identification of isolated	
microorganisms	50
a. Media used for isolation and identification of bacteria	50
b. Media used for isolation and identification of fungi	52
c. Enzyme production	53
III. Identification of isolated microoranisms	55
a. Identification of isolated bacterial strains	55
b. Identification of isolated fungal strains	59
c. Identification of yeast	61
d. Identification of chlamydia	62
IV. Antimicrobial susceptibility test	64

	rage
a. Antibiotic susceptibility test of the bacterial isolates	64
b. Antifungal susceptibility test of the fungal isolates	64
V. Ocular Immunity	65
a. IgA of Tear	65
b. Lysozyme of tear	67
VI. Biochemical tests	68
a. Detection of protease production	68
b. Detection of lipase production	68
- Results	
I. Total number and percentage of patients suffering from	
conjunctivitis	69
1. Total number of bacterial infection	70
2. Total number of fungal infection	71
3. Total number of chlamydial infection	71
4. Total number of mixed culture	71
II. Normal flora	76
III. Isolation of microorganisms causing conjunctivitis	77
1. Bacteria	77
2. Fungi	84
IV. Seasonal variation of microorganisms causing	
conjunctivitis	91
1. Bacteria	91
2. Fungi	96
3. Chlamydia	101
V. Sensitivity Test	103
1. Sensitivity test of bacteria	103
2. Sensitivity test of fungi	105
VI. Tear IgA and lysozyme	107
VII. Enzymes activity	109
1. Enzymatic activity of bacteria	109
2. Enzymatic activity of fungi	109
- Discussion	112
- Summary	141
- References	146 176
- Arahic Summary	170

LIST OF TABLES

	Page
Table 1: Distribution of total conjunctivitis cases according to age	
groups and sex.	70
Table 2: Frequencies of bacterial conjunctivitis according to age	
groups and sex.	72
Table 3: Frequencies of fungal conjunctivitis according to age	
groups and sex.	73
Table 4: Frequencies of chlamydial conjunctivitis according to age	
groups and sex.	74
Table 5: Frequencies of mixed culture microorganisms	
conjunctivitis according to age groups and sex.	75
Table 6: Distribution of organisms isolated from the normal	
conjunctiva of 50 subjects, according to age.	76
Table 7: Bacterial species isolated from 52 children suffering from	
conjunctivitis.	79
Table 8: Bacterial species isolated from 25 adolescents suffering	
from conjunctivitis.	79
Table 9: Bacterial species isolated from 66 adults suffering from	
conjunctivitis.	82
Table 10: Fungal species isolated from 9 children suffering from	
conjunctivitis.	86
Table 11: Fungal species isolated from 7 adolescents suffering	
from conjunctivitis.	86
Table 12: Fungal species isolated from 32 adults suffering from	
conjunctivitis.	89

Table 13: Distribution of 143 bacteriai conjunctivitis cases in	
different seasons throughout the year.	93
Table 14: Distribution of total bacterial conjunctivitis cases in	
different patient groups with percentages.	95
Table 15: Distribution of 48 fungal conjunctivitis cases in different	
seasons throughout the year.	98
Table 16: Distribution of fungal conjunctivitis with different	
patient groups with percentages.	100
Table 17: Distribution of chlamydial infection with active	
trachoma & Paratrachoma chlamydia disease cases	
throughout 214 cases.	102
Table 18: Antibacterial activity of some pharmaceutical drugs.	104
Table 19: Antifungal activity of some pharmaceutical drugs.	106
Table 20: Distribution of tear IgA in normal controls.	108
Table 21: Distribution of tear lysozyme in normal controls.	108
Table 22: Difference between tear IgA in matched controls and in	
214 cases of microbial conjunctivitis.	108
Table 23: Difference between tear lysozyme in matched controls	
and in 214 cases of microbial conjunctivitis.	108
Table 24: Bacterial species recovered from conjunctivitis cases and	
their extracellular enzymatic activities.	110
Table 25: Fungal species recovered from conjunctivitis cases and	
their extracellular enzymatic activities.	111

LIST OF FIGURES

	Page
Fig. 1: Shows total number of conjunctivitis cases.	70
Fig. 2: Shows total number of bacterial conjunctivitis cases.	72
Fig. 3: Shows total number of fungal conjunctivitis cases.	73
Fig. 4: Shows total number of chlamydial conjunctivitis cases.	74
Fig. 5: Shows total number of mixed culture cases.	75
Fig. 6: Shows total bacterial species throughout 52 children cases	
of conjunctivitis.	80
Fig. 7: Shows total bacterial species throughout 25 adolescent	
cases of conjunctivitis.	81
Fig. 8: Shows total bacterial species throughout 66 adult cases of	
conjunctivitis	83
Fig. 9: Shows total fungal species throughout 8 children cases of	
conjunctivitis	87
Fig. 10: Shows total fungal species throughout 7 adolescent cases	
of conjunctivitis	88
Fig. 11: Shows total fungal species throughout 32 adult cases of	
conjunctivitis	90
Fig. 12: Shows total bacterial incidence throughout the year.	94
Fig. 13: Shows total fungal incidence throughout the year.	99

INTRODUCTION and AIM OF THE WORK