Ain Shams University Faculty of Engineering Department of Civil Engineering

INTERACTION OF PLANE FRAMES WITH ELASTIC FOUNDATION

BY

KHALED SAAD EL DIN MOHAMED RAGAB

B.Sc. Civil Eng. 1984 Diploma in Structural Eng. 1990 Ain Shams University

6241773 K.S

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

SUPERVISED BY

Prof. Dr. AHMED A. KORASHY

Professor of Theory of Structures
Department of Civil Engineering
Ain Shams University

Dr. ABDEL SALAM A. MOKHTAR

Assistant Professor
Department of Civil Engineering
Ain Shams University

1993

Ain Shams University
Faculty of Engineering
Department of Civil Engineering

INTERACTION OF PLANE FRAMES WITH ELASTIC FOUNDATION

 $\mathbf{B}\mathbf{Y}$

KHALED SAAD EL DIN MOHAMED RAGAB

B.Sc. Civil Eng. 1984 Diploma in Structural Eng. 1990 Ain Shams University

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

SUPERVISED BY

Prof. Dr. AHMED A. KORASHY

Dr. ABDEL SALAM A. MOKHTAR

Professor of Theory of Structures
Department of Civil Engineering
Ain Shams University

Assistant Professor
Department of Civil Engineering
Ain Shams University

1993

Examiners Committee

Name, Title & Affiliation

Signature

1- Prof. Dr. Ibrahim Mahfouz

I.M. Ihraki-

Professor and Chairman of the department of Civil Eng. at Zagazig University, Benha branch, Shoubra.

2- Prof. Dr. Abdel Raouf Watson Beshara
Professor of theory of structures, department of Civil

A.J. Testina

Eng., Ain Shams University.

3- Prof. Dr. Ahmed Abdel Moneim Korashy
Professor of theor of structures, department of Civil
Eng., Ain Shams University.

A. Korashy

Date 4/7/1993

STATEMENT

This dissertation is submitted to Ain Shams University for the Degree of M.SC. in Civil Engineering.

The work included in this thesis was carried out by the author in the Department Of Civil Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date:

Signature:

Name: Khaled Saad Eldin Mohamed Ragab

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to Prof. Dr. Ahmed A. Korashy Professor of theory of structures, department of civil engineering, Ain Shams University for his valuable supervision, suggestions, and helpful comments during the preparation of this thesis.

My deepest appreciation to Dr. Abdelsalam A. Mokhtar, Assistant Professor, department of civil engineering, Ain Shams University for his valuable supervision, discussions, and unfailing attention through all stages of preparation of this thesis.

The another further wishes to acknowledge the fruitful cooperation of the department of systems of research and studies organization, Ministry of development.

Special thanks my family for their valuable advice and continuous encouragement throughout the course of this thesis.

Interaction of Plane Frames with Elastic Foundation

M.Sc. Thesis in Civil Engineering

Dept. of Structural Eng., Ain Shams University

$\mathbf{B}\mathbf{y}$

Khaled Saad El Din Mohamed Ragab

Abstract

Analysis of statically indeterminate frames are influenced by the deformation of supporting foundation. This thesis presents an analytical procedure which can perform the following tasks.

- 1- Analysis of interaction of plane frames with elastic foundation having normal and shear moduli of subgrade reactions taking into consideration the nonlinearity of soil, axial flexural interactions of frame and the effect of presence of basement walls and varition of its heights on the internal forces of structure.
- 2- Study of the effect of framing action when the frame and soil are treated as one compatible unit and comparing this solution with the solution of the foundation alone as a beam on elastic foundation.
- 3- Study the effect of use of tie beams and varying their positions on the internal forces of structure.

A computer program is developed to analyze these tasks using Fortran 77. Three groups of the models are solved to show the capabilities of the program. In addition, the solution by elastic shear modulus of soil on the internal forces of structure is studied. Based on the results of these groups, the conclusions and recommendations are presented.

TO MY FAMILY

Table of Contents

Notations		
Chapter (1)	Introduction	
	1.1 Interaction behaviour	1
	1.2 Soil structure interaction	3
	1.3 Soil nature behaviour —	4
	1.4 Behaviour of the soil foundation interface	4
	1.5 Objective and scope —	6
Chapter (2)	Review of Previous Work	
	2.1 Introduction	10
	2.2 Idealized soil models.	10
	2.2.1 The Winkler model	11
	2.2.1.1 Historical review concerning the analysis	
	of finite beams on a Winkler model. —	11
	2.2.2 The elastic continum model (isotropic homogene-	
	ous elastic half - space model).	14
	2.2.2.1 Historical review concerning the analysis of	
	finite beams on an isotropic elastic continuum	
	model of soil	15
	2.2.3 The two parameter elastic model.	17
	2.3 Contact pressures by the theory of subgrade reaction -	18
	2.4 Experimental determination of K_v , the subgrade modulus.	22
	2.5 Factors affecting the magnitude of the coefficients of	•
	subgrade reaction.	23

		2.5.1 The modulus of subgrade reaction, K _v .	24
		2.5.2 The coefficient of horizontal soil reaction, K _h .—	29
	2.6	Influence of the rigidity of superstructure on the	;
		differential settlement of foundation.	33
Chapter (3)	Matl	nematical Model	
	3.1	Introduction —	37
	3.2	Review of stiffness matrix for a plane frame element	37
	3.3	Stiffness matrix for a beam element on elastic foundation	1
		having normal subgrade reaction.	41
	3.4	Stiffness matrix for a frame element on elastic founda-	-
		tion having normal and shear moduli.	46
	3.5	Nodal load vector for beam on elastic foundation	51
	3.6	Analysis of a beam on nonlinear Winkler foundation.	54
	3.7	Modified stiffness matrix for the axial flexural interac	-
		tion of the superstructure elements.	56
Chapter (4)	Cor	nputer Program	
	4.1	Introduction ————————————————————————————————————	59
	4.2	Explanation for computer implementation	59
	4.3	Short notes about the main program and its subprogram	61
		4.3.1 Main program	61
		4.3.2 Subprogram Gtdata	61
		4.3.3 subprogram Gtload —————	61
		4.3.4 Subprogram Gtwrite	67
		4.3.5 Subprogram step (1)	67

	4.3.6 Subprogram step (2)	67
	4.3.7 Subprogram step (3)	67
	4.4 Description of the input and output data for the different	
	uses of the program.	67
	4.5 Verification probems	74
Chapter (5)	Parametric Studies	
	5.1 Introduction	84
	5.2 Effect of basement walls	84
	5.3 Effect of soil structure interaction	84
	5.4 Effect of position of tie beam	98
	5.5 Parameters that were not changed	98
	5.6 Secondary parameters ————————————————————————————————————	102
Chapter (6)	Results and Discussion	
	6.1 Introduction	104
	6.2 Buildings having basement walls and loading in the	
	vertical and horizontal direction [Group (1)] —	104
	6.2.1 The elastic analysis (considering $\boldsymbol{K}_{\!_{\boldsymbol{v}}}$ and $\boldsymbol{K}_{\!_{\boldsymbol{h}}})$ as a	
	percentage from rigid analysis (neglecting K _v and	
	K _b).	106
	6.2.1.1 Effect of considering K_v and K_h (elastic	
	analysis) ———————————————————————————————————	106
	6.2.1.2 Effect of change the height of the retaining	
	wall.	111
	6.2.1.3 Effect of the number of floors —	112
	6.2.1.4 Effect of the number of spans ————	115

	6.2.2 The elastic analysis (considering $\boldsymbol{K}_{\!_{\boldsymbol{v}}}$ and $\boldsymbol{K}_{\!_{\boldsymbol{h}}})$ as a	
	percentage from elastic analysis without including	
	the shear modulus of subgrade reaction (K _h). —	116
	6.2.3 Effect of existance of the basement walls.	119
	6.2.4 Effect of the axial-flexural interaction for super-	
	structure on the elastic analysis (considering K _v	
	and K_h).	121
	6.2.5 Effect of the nonlinear stress - strain curve of the	
	soil on the elastic analysis (considering K_v and K_h).	121
6.3	Buildings loading in the vertical direction only [Group	
	(2)]. ————————————————————————————————————	124
	6.3.1 The elastic analysis (considering $K_{\rm v}$ and $K_{\rm h}$) with	
	framing action as a percentage from rigid analysis	
	(neglecting K _v and K _h).	126
	6.3.1.1. Effect of the number of floors. ———	126
	6.3.1.2 Effect of the number of spans. ———	126
	6.3.1.3 Effect of the type of foundations —	126
	6.3.2 The elastic analysis (considering K_v and K_h) as a	
	percentage from elastic analysis without including	
	the shear modulus of subgrade reaction (K _h).	127
	6.3.3 The elastic analysis (considering $K_{\rm v}$ and $K_{\rm h}$) with	
	framing action as a percentage from beam on elas-	
	framing action as a percentage from beam on elastic foundation analysis (considering K_v and K_h).	127
	tic foundation analysis (considering K_v and K_h).	127

	6.3.4 The elastic analysis (considering K_v and K_h) with	
	framing action as a percentage from beam on rigid	
	foundation analysis (neglecting K, and Kh).	129
	6.3.4.1 Effect of the number of floors	129
	6.3.4.2 Effect of the number of spans	129
	6.3.4.3 Effect of the type foundations	129
	6.4 Building having tie beams with varying their positions	
	[group (3)]. ————————————————————————————————————	130
	6.4.1 Effect of the tie positions on the elastic analysis	
	(considering K _v , and K _h).	130
Chapter (7)	Conclusions and Recommendations	
	7.1 Conclusions.	134
References		138
Appendices		
	(A) Listing for the computer program used in the study. —	145

Notations

The following symbols have been adopted for use in this study other symbols not listed below are defined where they are used.

W Surface displacement.

K Modulus of subgrade reaction.

P Force applied at a point.

E_s Young's modulus.

γ_s Poisson's ratio.

EHS Elastic half space (a semi-infinite continuous elastic solid).

FEM Finite element methods.

K. Vertical subgrade reaction.

K_b Horizontal soil reaction.

B, L Width and length of foundation respectively.

D Depth of embedment.

u Horizontal displacement.

V Vertical displacement.

 θ Rotation.

{P}, {S} The external force and displacement vectors, respectively.

[K] The total stiffness matrix.

EI Flexural rigidity.

q Represents the transverse distributed load per unit length.

 y_0, θ_0 Initial condition for deflection and rotation, respectively.

M_o, Q_o Initial condition for moment and shear, respectively.

 $\sigma_{\mathbf{x}}$ Stress

 ε_{x} Strain

A Cross section area.

 y_p, y_m, y_q Particular solutions corresponding to concentrated force "P", concentrated moment "M" and uniformly distributed load "q".

 V_i^P, V_i^M, V_i^q Denote the nodal load vector components in the degree of freedom direction (i = 2, 3, 5, 6) due to concentrated "P", concentrated "M" and uniformly distributed load "q" respectively.

 δ_A Deflection of point (A).

The member axes are rotated from the structural axes about the Z axis through the angle γ.

R_T The rotation transformation matrix for a plane frame member,

 C_x , C_v The direction cosines and sines for the member.