BIOCHEMICAL STUDIES OF STEROIDS ON PROTEIN METABOLISM IN RATS

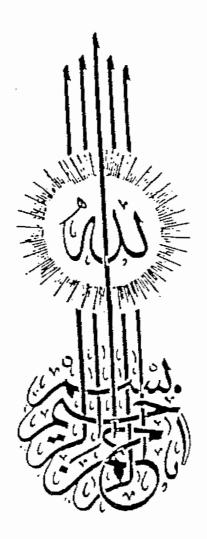
THESIS

Submitted By

HUSSAM EL-DIN ALY ALY MUSTAPHA

(B. Sc. Biochem., 1982)

Th Partial Fulfilment for the Degree of


M. Sc. in Biochemistry

AIN SHAMS UNIVERSITY

FACULTY OF SCIENCE

DEPARTMENT OF BIOCHEMISTRY

1986

وطاتوشيتي إلابالك

صدق الله العظيم

To My Parents

THIS THESIS HAS NOT BEEN SUBMITTED FOR A DEGREE AT THIS OR ANY OTHER UNIVERSITY

Hussam A. A. Mustapha

ACKNOWLEDGEMENT

I wish to express my deep thanks to Dr. ABDEL HALIM, A.H., MUSTAPHA, Professor of Biochemistry, Faculty of Science, Ain Shams University for his interest and cooperation.

I am deeply indebted to Dr., FAWZIA, M. REFAIE, Professor of Biochemistry Faculty of Science, Ain Shams University for suggestion of the problem, valuable assistance and encouragement throughout this thesis.

I would like to take the opportunity to thank Dr. TAHANY, M. MAHAREM,

Assistant Professor of Biochemistry, Faculty of Science, Ain Shams University for
her tutorial guidance and active supervision.

I am specially grateful to Dr. M.S.A. ABDEL MOTALEB, Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University for providing laboratory facilities of the department, as well as Dr. M. AYAD, Professor and Head of Surgery and Obstetrics Department, Faculty of Veterinary, Cairo University, who learned me the technique of adrenalectomy.

Finally, I would like to thank my friend Mr. AMR YOUSSEF ESMAT,

Demonstrator in the Department of Biochemistry, Faculty of Science, Ain Shams

University, for his sincere continued support and encouragement.

CONTENTS

Introduction	ı
Aim of the Work	28
Materials and Methods	
Animals	29
Hormones	29
Diurnal Rhythm of Plasma Corticosterone	29
Animal Management	30
Bilateral Adrenalectomy by Means of Extraperitoneal	
Approach	34
Biochemical Analysis	
I. Plasma Studies	
1. Determination of Plasma Corticosterone	37
2. Determination of Plasma Cholesterol	39
3. Determination of Plasma Proteins	4(
4. Determination of Plasma Amino Acid Nitrogen	44
5. Determination of Plasma Urea Nitrogen	
6. Determination of Plasma Uric Acid	58
II. Tissue Studies	
1. Determination of Aminotransferases in liver and brain	50
2. Determination of Alkaline Phosphatase in liver	53
3. Determination of Total Proteins in liver and brain	55
4. Determination of Deoxyribonucleic Acid in liver and brain	56
5. Determination of Ribonucleic Acid in liver and brain	57
Statistical Analysis	61
r Results	64
1 Discussion	96
Summary	123
References	126
Aughta Commencer	

INTRODUCTION

INTRODUCTION

Communication is a most important problem in a multiorgan animal. Thus in the human it is essential that various tissues interrelate so that each can play its particular role in the function of the whole body. Communication involves two types of mechanisms: one is neurological and requires the nervous system, the other is chemical and requires the production of regulatory substances called hormones (Orten & Neuhaus, 1982). The word hormone is derived from a Greek verb meaning "to stir up or excite". Hormones; trace substances produced by various endocrine glands (ductless glands) such as the adrenals, ovaries, parathyroids, pituitary, testes, and thyroid serve as chemical messengers carried by the blood to various target organs, where they regulate a variety of physiological and metabolic activities in vertebrates (Lehninger, 1978, 1982). Structurally they are not always proteins, the known hormones include also small polypeptides and steroids (Grodsky, 1979).

The adrenal cortices and the gonads have a common origin in the embryonic coelomic epithelium and, in the adult, they secret hormones all of which are steroids and have very similar structures and many common functions. The steroids belong to a group of compounds found widely in nature and having the characteristic cyclopentanoperhydrophenanthrene nucleus as the chemical basic ring (Montgomery & Welbourn, 1975).

Cyclopentanoperhydrophenanthrene nucleus

, ,

The steroid hormones may be divided into 4 main groups: Corticosteroids (glucocorticoids and mineralocorticoids), androgens, estrogens and progesterone. The chemical characteristics of these steroids are indicated in Fig. (1). The shape of the steroid molecule is critical in determining its physiological activity. Thus, the minimal requirement for activity of a corticosteroid is the presence of hydroxyl groups at the 11β and 21 positions, ketones at carbon 3 and 20, and a double bond between carbon 4 and 5. Androgens have a 17β -hydroxyl at the 17th carbon and a 3-ketone. In estrogens the A ring must be a phenol. Glucocorticoids are the steroid hormones of the adrenal cortex, which primarily affect nitrogen metabolism (Bondy, 1985).

The adrenal glands consist of 2 parts; an outer cortex (firm and golden yellow) and an inner medulla (soft and reddish). The former tissue which is derived from the embryonic coelomic epithelium is controlled by adrenocorticotropic hormone; ACTH (a polypeptide hormone of 39 amino acids secreted from the anterior pituitary gland), and is essential to life. The latter tissue develops from the neural ectoderm and is a specialized part of the sympathetic nervous system (Montgomery & Welbourn, 1975).

The adrenal cortex is divided into 3 zones: the outer zona glomerulosa, the zona fasciculata and the inner zona reticularis Fig. (2). The zona reticularis and zona fasciculata are functionally a single unit; the inner zone produces all the steroids except aldosterone, while the zona fasciculata acts as a store house for steroid precursor (cholesterol). During active secretion the clear cells at the junction of the zona fasciculata and reticularis (the interface zone) are converted into compact cells under the influence of ACTH. This conversion of clear to compact cells gradually extends outward and the zona fasciculata becomes thinner and depleted of lipids and ascorbic acid, while the reticularis increases in thickness and becomes richer in enzymes and ribonucleic acid (RNA). Functional activity is assisted by a peculiar arrangement of the longitudinal muscle of the central vein. When it contracts, blood is trapped in the vascular system of the reticularis. This brings ACTH

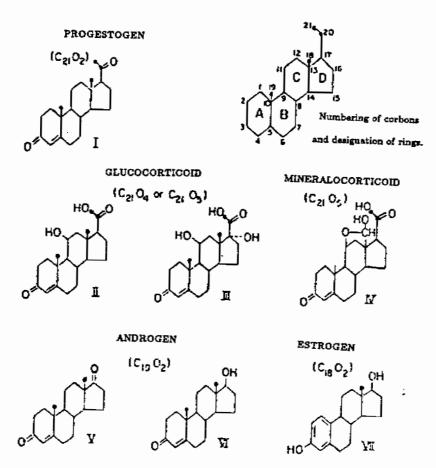


Fig. (1) Chemical structures of representatives of major classes of biologically active steroids. I = progesterone; II = corticosterone; III = cortisol; IV = aldosterone; V = androstenedione; VI = testosterone; VII = estradiol. A carbon atom is located at each angle of the cyclic structures and at each point on the prosthetic groups where there is a dot. (Adapted from Bondy, 1985).

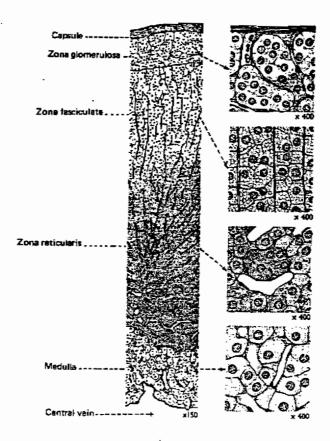


Fig. (2) Histology of the human adrenal gland (adapted from Briggs & Brotherton, 1970a).

into contact with the cells of the zona fasciculata closest to the interface zone and the cholesterol in these cells is converted to steroids (Montgomery & Welbourn, 1975).

Liddle (1981) reported that the adrenal cortex was not only able to synthesize cholesterol but also to take it up from the circulation. The cholesterol thus accumulated was then available for conversion into steroid hormones.

Recently, Bondy (1985), stated that the formation of active steroid by the adrenal cortex requires a series of reactions as follows Fig. (3):

- a. Provision of the substrate (cholesterol).
- b. Cleavage of the side chain from cholesterol to form a C_{21} steroid.
- c. Hydroxylation of the resulting steroid in a variety of positions.
- d. Oxidation of the 3\beta hydroxy to a 3-ketone and shift of the double bond from the 5,6 position as in cholesterol to 4,5 double bond found in all secreted hormonal steroids except estrogens.

There are several immediate sources of cholesterol for steroid biosynthesis; the free and the esterified cholesterol associated with the lipoproteins of plasma; the free and the esterified cholesterol stored in adrenal lipid droplets and the cholesterol synthesized by the adrenal cortex. Of these the cholesterol of plasma low density lipoprotein (LDL) appears to be the preferred substrate, at least in humans. Cells of the adrenal cortex have LDL receptors and uptake of LDL is stimulated by ACTH. High density lipoprotein (HDL) can also act as a substrate in some species such as rat, but very low density lipoproteins (VLDL) are not taken up by adrenal cells and thus do not provide precursor cholesterol for steroid synthesis. LDL receptor complexes on the cell surface are internalized by receptor mediated endocytosis, and the protein components as well as cholesterol esters are hydrolyzed in lysosomes releasing free cholesterol some of which are directly used for

Fig. (3) Pathways for the synthesis of adrenal steroids. The enzymes involved are as follows: A, desmolase; B, Δ^5 -isomerase 3B-hydroxydehydrogenase; C, 17a-hydroxylase; D, 11 β -hydroxylase; E, 21-hydroxylase; F, 18-oxidase, (adapted from Bell et al., 1980).

steroid synthesis. A part is reesterified and stored in lipid droplets as cholesterol ester, from which it can be released later to serve as a substrate (Bondy, 1985). Furthermore, Bondy reported that ACTH stimulates steroid secretion in addition to enhancing the uptake of LDL-cholesterol, and that the adrenal handles normal steroid production by utilizing free cholesterol from plasma or the labile tissue pool, but drawn on stored cholesterol esters as a reserve when rapid synthesis is required.

The cholesterol is converted to pregnenolone by enzyme systems present in adrenocortical mitochondria, and there is evidence that the 20α -hydroxycholesterol and 20α -22 di-hydroxycholesterol are intermediates. The splitting of the side chain of 20α , 22 dihydroxycholesterol to form pregnenolone and isocaproic aldehyde is mediated by cholesterol desmolase which requires molecular oxygen and nicotinamide adenine dinucleotide phosphate (NADPH). The supply of pregnenolone for steroid synthesis appeared to be rate limiting, and it is reasonable to regard the conversion of cholesterol to pregnenolone as a control point for the whole steroid biosynthetic pathway (Briggs & Brotherton, 1970b). The stimulation of corticosteroid biosynthesis by ACTH (Stones & Hechter, 1954; Haynes *et al.*, 1959 and Grahame - Smith *et al.*, 1967) takes place at this control point, and more precisely at the first hydroxylation step (Koritz & Kumar, 1970). ACTH may stimulate side chain cleavage by inducing the synthesis of a peptide activator of the cleavage reaction (Pederson & Brownie, 1983).

Pregnenolone so formed leaves the mitochondria, where it becoming a substrate for 2 enzymes; NAD⁺-requiring 3β -ol dehydrogenase and $\Delta^{4,5}$ isomerase (formed in endoplasmic reticulum, Mustafa & Koritz, 1975; and does not require a cofactor, Neville & Engel, 1968). As a result, progesterone is formed which undergoes a sequential hydroxylation at 17-, 21-carbon in the endoplasmic reticulum and at 11-carbon in the mitochondria to produce the major glucocorticoids; cortisol and corticosterone the relative amounts of which depend in part on the relative rates of 17- and 21-hydroxylation.