

Ain Shams University Faculty of Engineering

Buckling of Grid Shells Using Bi-Quadratic B-Spline Finite Element

A Thesis

Submitted in Partial Fulfillment for the Requirements
of the Degree of Doctor of Philosophy
in Structural Engineering

 B_{Y}

Mostafa Mohamed Mohamed Abdel-Wahab

624-171 M·M B.Sc. in Structural Engineering, 1981, Military Technical College. M.Sc. in Structural Engineering, 1987, Ain Shams University.

Supervised by

Prof. Dr. Adel Helmy Salem Professor of Structural Eng., Ain Shams University

Ass. Prof. Dr. M. A. Mohamedien Ass. Professor of Structural Eng., Suez Canal University Prof. Dr. Mostafa Kamel Zidan Professor of Structural Eng.. Ain Shams University

67557

Ass. Prof. Dr. Mohamed S. Raslan Ass. Professor of Structural Eng., Military Technical College

1997

Examiners Committee

Name, Title, and Affiliation

Signature

1- Prof. Dr. Mostafa Ahmed Sweilam Professor of Structural Eng., Alexandria University n. Ind

2- Prof. Dr. Kamal Hassan Mohamed Professor of Structural Eng., Ain Shams University

V. Hasse

3- Prof. Dr. Adel Helmy Salem Professor of Structural Eng., Aln Shams University

كاللطي

Date: / - / 1997

Statement

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Structural Engineering.

The research work reported in this thesis was carried out by the author in the department of Structural Engineering, Ain Shams University, from November 1992 to May 1997.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date: / /1997

Signature :

Name: Mostafa Mohamed Abdel-Wahab

Acknowledgements

The author wishes to express his deep gratitude and appreciation to Prof. Dr. Adel Helmy Salem, *Professor of Structural Engineering, Ain Shams University*, for his valuable contributions, precious advice and encouragement, in addition to the fatherhood spirit that he demonstrated throughout the completion of the thesis.

The author is also grateful to Ass. Prof. Mohamed Ahmed Mohamedien, Associate Professor of Structural Engineering, Suez Canal University, for his constant guidance, valuable assistance and precious advice during the completion of this thesis and to whom the author is greatly indebted. Grateful acknowledgment is due to Asst. Prof. Dr. Mohamed Saad Raslan, Chief of Chair of Structural Engineering, Cairo, Military Technical College, for his true help, constant guidance and considerable suggestions which brought this work to a successful ending. The author also wishes to thank Prof. Dr. Mostafa Kamel Zidan, Professor of Structural Engineering, Ain Shams University for his valuable assistance.

I dedicate this work to my mother Saffeia, my wife Saly and my family whose love, support and numerous sacrifices have made it possible.

Abstract

Name of Researcher:

Mostafa Mohamed Abdel-Wahab

Title of Thesis:

"Buckling of Grid Shells Using Bi-Quadratic B-Spline Finite Element"

This thesis aims to study the elastic stability of curved beams and grid shells which are represented geometrically by single or double free curves. The analysis of these types of structures is one of the more difficult problems that has been attempted with the finite element method. The notion of shells with free surfaces are characterized completely by the motion of a reference surface, and a finite element analysis is complicated greatly by the need to represent accurately the motion of this reference surface. Both the stretching and curvature change of the surface are required in the prediction of the strains existing throughout the shell.

This thesis presents a comprehensive study of the geometric representation of free curves and surfaces. A comparison between the different methods which are used to represent the curves and surfaces is made first, from which it can be concluded that the Quadratic B-spline polynomial is very efficient to represent the free surfaces since it requires less number of elements and control points as well as less computations.

The strain energy equations of plane curved structures are derived first based on the Quadratic B-Spline function with three control points. Four parameters have a significant effect on the derivation of the strain energy equations of plane curved structures. These parameters are:

- (i) Change of curvature of the curved structure.
- (ii) Axial strain of the curved structure.
- (iii) Boundary conditions
- (iv) External forces.

The stability of straight struts and compressed beams with initial imperfections as well as circular beams subjected to different types of loads are studied using Quadratic-B-Spline finite element. A comparison between the results and those of finite element method and Cubic-B-spline finite element method is made. After developing the strain energy equations of plane curved structures, the strain energy equations of grid shell is derived based on Bi-Quadratic B-Spline finite element with nine control points. To derive this equation, the effect of five parameters on the strain of grid shell has to be considered. These parameters are:

- (i) Change of Normal Curvature.
- (ii) Change of goedesic curvature.
- (iii) Torsional bending term.
- (iv) Boundary conditions
- (v) External loads.

The stability of hyperbolic paraboloid grid shells and elliptic paraboloid grid shells as well as cylindircal grid vaults subjected to vertical loads are studied using quadratic B-Spline elements.

- v -

This element is capable of finding to a good degree of accuracy the failure load, the mode of buckling and load-deflection curve of grid shells.

- vii -

List of Contents

	Page
Acknowledgments	i
Abstract	iii
List of Contents	vii
Notations	XV
Chapter I: Introduction	
1.1. General	1
1.2. Scope of the Problem	11
1.3. Purpose of the Thesis	12
1.4. Organization of the Thesis	13
Chapter II: Literature Review	
2.1. Curve Geometric Definitions	15
2.1.1. Arc length and tangent	15
2.1.2. Curyature	17
2.1.3. Torsion	18
2.2. Surface Geometric Definitions	22
2.2.1. General relationships	22
2.2.2. First fundamental form of a surface	24
2.2.3 Second fundamental form of a surface	28

	Page
2.2.4. Geodesic curvature	30
2.3. Strain Displacement in Curvilinear Coordinates	33
2.4. Two-Dimensional Coordinate Transformations	36
2.4.1. Two-dimensional coordinate translation	37
2.4.2. Two-dimensional coordinate rotation	37
2.5. Three-Dimensional Coordinate Transformations	39
2.5.1. Three-dimensional coordinate translation	39
2.5.2. Three-dimensional coordinate rotation	. 40
2.6. Interpolation of Curves and Surfaces	42
2.6.1. Introduction	42
2.6.2. Representation of curves	42
2.6.2.1. Bezier curve segment	45
2.6.2.2. The quadratic Bezier curve segment	48
2.6.2.3. B-Spline curve segment	49
2.6.2.4. The quadratic B-Spline curve	
segment	52
2.6.3. Representation of surfaces	57
2.6.3.1. Bi-quadratic Bezier surface patches	57
2.6.3.2. The Bi-quadratic B-Spline surface	
patches	61
2.6.3.3. Composite B-Spline surface	65
2.7. The Large Deflections of Buckled Bars (The	67

	Page
Chapter III: Numerical Methods of Structural	
Analysis	
3.1. Introduction	77
3.2. Energy Theorems	77
3.2.1. Principle of virtual work	77
3.2.2. Castigliano's first theorem	78
3.2.3. Principle of minimum potential energy	79
3.3. Finite Difference Method	80
3.4. Finite Element Analysis	81
3.4.1. General description of the finite element	
method	81
3.4.1.1. Discretization of the structure	82
3.4.1.2. Selection of a proper interpolation	
model	82
3.4.1.3. Derivation of element characteristic	
matrices and vectors	85
3.4.1.4. Assemblage of element matrices	
and vectors and derivation of	
system equations	86
3.4.1.5. Solution for the unknown nodal	
displacements	86
3.4.1.6. Computation of element strains and	
stresses	87
3.4.2. Non-linear structural analysis	87
3.4.3. Convergence criteria	88
3.4.4. Basic steps in non-linear program	89
3.4.5. Finite element analysis of shells	89

	Page
3.4.5.1. 28 and 36 degree of freedom	
curved element	91
3.4.5.2. Flat shell element	101
3.4.5.3. Finite strip element	103
3.5. B-Spline Finite Element Analysis	103
3.5.1. Discretization of the structure	103
3.5.2. Design of B-Spline curve	105
3.5.3. Derivation of element characteristic	
matrices and vectors	108
3.5.4. Assemblage of element matrices and	
vectors	108
3.5.5. Solution for the unknown control points	
displacements	108
3.5.6. Computation of element displacement	109
-	
Chapter IV: Stability of Curved Beams and	
Arches Using Quadratic	
B-Spline Finite Elements	
4.1. Introduction	111
	111
4.2. Strain Energy Equation of Curved Beams and	
Arches Using Quadratic B-Spline Polynomial	111
4.2.1. The sreain energy of the curved beam due	
to bending	116
4.2.2. Axial strain energy of the curved beams	120
4.2.3. Calculation of equivalent load and	
stiffness of the spring supports	423
4.2.4. Calculation of the potential energy of the	
external forces	130

•	
	Page
4.3. Applications	131
4.3.1. Stability of two-hinged column	131
4.3.2. Analysis of an elastic circular arch	134
4.4. Conclusions	154
,	
Chapter V: Three Dimensional Analysis of	
Grid Shells Using Bi-Quadratic	
B-Spline Finite Elements	
5.1. Introduction	155
5.2. The Stability Equation of Grid Shell	157
5.2.1. Calculation of the normal bending term	
Q1	162
5.2.2. Generation of the geodesic bending term	
Q ₂	165
5.2.3. Formulation of the torsional bending term	
Q3	168
5.2.4. Generation of the equivalent load and	
stiffness matrix of the spring supports	
term Q ₄	170
5.2.5. Calculation of the potential energy of the	
external load Q	172
5.3. Application	173
5.3.1. Analysis of elliptic paraboloid grid shell	173
5.3.2. Analysis of hyperbolic paraboloid grid	175
shell	185
	193
5.3.3. Analysis of cylindrical grid vault	
5.4. Conclusions	205

	Page
Chapter VI: Buckling Analysis of Grid Shell	
6.1. Introduction	207
6.2. Elastic Stability of Elliptic Paraboloid Grid Shells	208
6.3. Elastic Stability of Hyperbolic Paraboloid Grid Shells	220
6.4. Elastic Stability of Cylindrical Grid Vaults	228
6.5. Comparison of B-Spline Finite Elements Used in the Analysis of Grid Shells	250
6.6. Conclusions	254
Chapter VII: Conclusions and Recommendations	
7.1. General	255
7.2. Conclusions	256
7.3. Recommendations for Future Research	258
References	263
Appendices:	
Appendix (A): Computer Program to Calculate the Coordinates of Control Points of Ouadratic-B-Spline Element	271

- xiii -

	Page
Appendix (B): Two-Dimensional Program to Carry out two-Dimensional Analysis of Curved Structures Using Quadratic B-spline F.E.	277
Appendix (C): Computer Program to Carry out the Analysis of Grid-Shell Using B- Quadratic B-Spline F.E.	<i>-</i> 319
Appendix (D): Axial Stiffness Matrix [KAE]	373
Appendix (E): Computer Program for Generating the Buckling Loads of Struts with Initial Imperfections	381