

METAL COMPLEXES FOR SOME BIS PHENYL PYRAZOLYL METHANE

A Thesis

submitted by

FOUZE MOHAMED EL-SAYED OMAR

B.Sc.

PI TH

For

THE MASTER DEGREE

in Science

(Chemistry)

To

CHEMISTRY DEPARTMENT FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

J. 5 . 48

work carried out in the Faculty of Education AIN SHAMS UNIVERSITY

CAIRO

(1993)

METAL COMPLEYES OF SOME BIS-PHENYL PYRAZOLYL METHANE LIGARS.

Thesis Mivisors

Approved

OHE. M. R. A. El-Shetary Badrein St Shelan

Assiel. Diof. Dr. Ates A.T. Ramadan Ates A-T. Ramadan

Posts: Prof.Ur.Shaker.L.Stefan

Prof.Dr. A.F.M. Fahmy

Head of Chemistry Department

ACKNOWLEDGEMENT

The author wishes to express her deep appreciation to Dr. Bashier A. El-Shetary, Professor of Inorganic Chemistry, Faculty of Education, Ain Shams University, for his continuous supervision and the assistance he offered during the course of this work.

The authors wishes to express her gratitude to Dr. Atef A.T. Ramadan, Assistant Professor of Inorganic & Physical Chemistry and Dr. Shaker L. Stefan, Assistant Professor of Inorganic Chemistry, Faculty of Education, Ain-Shams University for their suggesting the point, valuable instructions and making this thesis possible to be in the present form.

The author appreciate the effort of Professor Dr. Ernö Brücher, Head of Inorganic and Analytical Chemistry Department and Dean of Lajos Kossuth University, Debrecen, Hungary in detection the thermal analysis for some of the solid complexes mentioned in this thesis.

Special thanks for Prof. Dr. S.M. Abd El-Moez, the Head of Chemistry Department, Faculty of Education, Ain-Shams University.

AIM OF THE WORK

The lanthanide and actinide elements constitute two families of metals which often exhibit similar chemical behaviour. This similarities is most easily observed with the cations in oxidation state (III).

The coordination chemistry of these elements has been studied nighter as intensively nor as extensively as that of the transition metal ions. One reason for this is that these elements have been less available generally than the transition metal elements. Although they are fairly abundant a lack of industrial application until a relatively few years ago caused many of the lanthanide elements to be fairly expensive. Increased intense in the use of these elements in phosphorous and lasers and as catalyst as well as improvement in the methods of separation has caused a substantial reduction of their cost. The lanthanide and actinide ions resemble the alkaline earth ions. They are type A or "hard acids" which have a strong preference for oxygen donor ligands. In the solid, it is possible to have coordination via nitrogen, sulphur, oxygen, etc..., but in aqueous solution, complexation almost always involves substitution of solvent water with their metal-oxygen bond by a ligand which forms another metal-oxygen bond.

A study of the thermodynamic parameters for the complexation reactions of Actinides yields valuable information concerning the nature of complex formed and

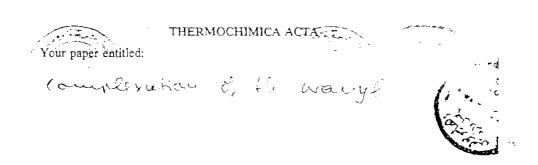
changes in the hydrogen of species in the reaction.

In the present study, a new concern arises towards the preparation of a new series of pyrazolone derivatives resulting from the condensation of 1-phenyl-3-methyl-5-pyrazolone with different substituted aldehydes to obtain bis condensation products.

Our aim is to study structure of these bis-condensation products and their pK^{μ} values, also we studied the metal binding properties of the ligands with some actinide and lanthanide ions.

The Following Paper has been accepted for Publication from This Thesis:

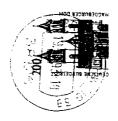
"Complexation of The Uranyl (UO22+) and Thorium (Th4+) with Aryl bis(5-hydroxy-3-methyl-1-phenyl pyrazol-4-yl)methane", A.A.T. Ramadan, S.L. Setfan, B.A. El-Shetary and F.M. Omar, Department of Chemistry, Faculty of Education, Ain-Shams University, Roxy, Cairo, Egypt.


Dr W. Hemminger Physikalisch-Technische Bundesanstalt Bundesallee 100 Postfach 3345 D-38023 Braunschweig Germany

POSTCARD

Dr. A.A. T. Ramadan Dept of Churchy Faculty of Education Hu shaws Univerty Cairo, Poxy EGYPT

- has been received and will be considered for publication in Thermochimica Acta at the earliest opportunity. Ħ
- has been accepted for publication in Thermochimica Acta subject to editorial revision.


 Proofs and a reprint form will be sent to you in due course.

ELSEVIER SCIENCE PUBLISHERS AMSTERDAM

Te elp

Dr W. Hemminger Physikalisch-Technische Bundesanstalt Bundesallee 100 Postfach 3345 D-38023 Braunschweig Germany

POSTCARD

Dr. Hef A.T. Remadan Department of Cherry Facility of Education Ain Shaw Univerty CAIRO, ROXY

EGYPT

THERMOCHIMICA ACTA

Your paper entitled:

Complexation of the wanyl

has been received and will be considered for Thermochimica Acta at the earliest opportunity.

has been accepted for publication in Thermochimica Acta subject to editorial revision. Proofs and a reprint form will be sent to you in due course.

ELSEVIER SCIENCE PUBLISHERS AMSTERDAM

Le wir

TO THE SOUL OF MY UNCLE "FADEL EL-SAYED OMAR"

TO MY

HUSBAND,

"AHMED ABD-EL-SALAM"

FATHER & MOTHER,

ALL MY FAMILY

Table of Contents

			Titi	t e	Page
<u>CHAP</u>	TER (<u>I)</u>			
	INTR	ODUCT	TION	************	1
	(A)	GENE	OUND	1	
	(B)	HYDR	NANIDES IN SOLUTION	3	
	(C)		S		
	(D)			VEY ON 5-PYRAZOLONE DERIVATIVES	
CHAP'	TER (I	<u> </u>	• • • • • • • • • • • • • • • • • • • •		14
	EXPE	RIMEN	TAL AND THE	CORETICAL	14
	(A)	EXPERIMENTAL			14
		(1)	Materials	8	14
		(2)	Preparati	on of the Organic Ligands	14
		(3)	Preparati	on of Solid Complexes	16
		(4)	Purificat	ion of Solvents	16
			(i)	Methanol	16
			(ii)	Dimethylformamide	17
		(5)	Solutions		17
			(i)	EDTA Solution	17
			(ii)	Potassium Hydroxide	18
			(iii)	Preparation of Organic Ligand	
				Solutions	18
			(iv)	Preparation of the Metal Ions	
				Solutions	18
		(6)	Experimen	tal Measurements	19

				Title Page
			(i)	Spectral Measurements 19
			(ii)	Conductance Measurements 19
			(iii)	
			(iv)	113
	(B)	ייטניי		pH-Measurements 20
	(15)			L 22
		(1)		Dissociation Constants 22
		(2)	Chela	te Stability Constants 25
CHA				
	POT	ENTIOM	ETRICS	TUDIES 31
	(A)	DISS	OCIATIO	ON CONSTANTS 31
	(B)	INTE	RACTION	N OF THE LIGANDS (X-Arbpym) WITH
		UO2(II) AND	Th(IV) INOS 33
CHAP	ጥፑድ (ועו		
	<u> </u>	<u> </u>	•••••	
	СНА	RACTER	IZATION	OF (X-ArbPyM) WITH UO2(II)
	AND	Th(IV) IONS	BY ELEMENTAL ANALYSIS, IR
	SPEC	CTRA AN	D THERM	MAL ANALYSIS 66
	(A)	RESU:	LTS OF	THE ELEMENTAL ANALYSIS
		(1)		Aryl bis(5-hydroxy-3-methyl-1-phenyl
				azolyl)-methane Complexes 67
		(2)		
		`-'		ryl bis(5-hydroxy-3-methyl-1-phenyl
			-3-bAt	azolyl)-methane Complexes

Titl	l e	Page

		(Th-ArBPy	M) 67
B)	INFR	ARED SPECTI	RA
	(1)	Infrared	spectra of Aryl bis(5-hydroxy
		-3-methyl	-1-phenyl-4-pyrazolyl)methane
		Derivativ	e (X-ArBPyM)68
		(i)	Absorption at the 4000 - 2000 cm ⁻¹
			region 68
		(ii)	Absorption at the 2500 - 1400
			cm ⁻¹ region 69
		(iii)	Absorption at the 1400 - 1000
			cm ⁻¹ region 69
		(iv)	Absorption at 1000 - 400 cm ¹⁻¹
			region 70
	(2)	The Infr	ared Absorption Spectra of The
		Complexes	71
		(i)	The Infrared Absorption Spectra of
			Th4+-(X-ArBPyM) Complexes 72
		(11)	The Infrared Absorption Spectra
			of UO22+~(X-ArBPyM) Complexes 74
(C)	THERM	AL ANALYSI	s 75
TGA,	DTG a	nd DTA Ther	emograms of the Complexes 77
		(i)	(UOz2+-ArBPyM) Complex 77
		(ii)	(UO ₂ ²⁺ -4-CH ₃ -ArBPyM) Complex 78
		(iii)	(UO ₂ ²⁺ -4-OCH ₃ -ArBPyM) Complex 80
		(iv)	(UO ₂ ²⁺ -4-NO ₂ -ArBPyM) Complex 81

		Title	Page
	(v)	(Th4+-ArBPyM) Complex	83
	(vi)	(Th ⁴⁺ -4-CH ₃ -ArBPyM) Complex	84
	(vii)	{Th*+-4-OCH3-ArBPyM) Complex	86
REFEREN	ICES		
Summary	<u>.</u>		114
Arabic	Summary		

CHAPTER (I) INTRODUCTION