mical and Physical Studies On Some Phosphate Glasses Containing Copper Ions

A Thesis
Submitted to

The Chemistry Department
Faculty of Science
Ain Shams University

By

EZZ EL-DIN SOBHY METWALY (M.Sc.)

For

The Degree of Doctor of Philosphy in Chemsitry

1997

Ain Shams University Faculty of Science

Approval Sheet

Name

: Ezz El-Din Sobhy Metwaly

Thesis title: Physical and chemical studies on some

phosphate glasses containing copper ions.

Supervisors

Approved

From Ain Shams University:

Dr. Ebtisam Ahmed Saad

From National Research Centre:

Prof. Dr. Morsi Mohamed Morsi

Prof. Dr. Khiry Mahmoud El Badry

Credit

H. Y. 17. 15,

Kh-Elbadory

Prof. Dr. A. F. Fahmy

A I M fa hing

Head of Chemistry Department

Acknowledgment

The candidate wishes to express his gratitude to Dr. Ebtisam Ahmed Saad, Chemistry Dept., Faculty of Ain Shams. For her kind interest, sincere encouragement, and advice she gave during the progress of the work.

The candidate would like to thank Prof. Dr. Morsi Mohamed Morsi, Glass Res. Dep., NRC, for supervision, suggesting. The problem, valuable discussions and his encouragement. I have learned a lot from him during the present work.

Deep appreciation to Prof. Dr. Khiry M. El-Badry, Glass Res. Dept., NRC, my promoter, for his sincere encouragement and interest and support during the present work.

My thanks also go to Dr. N. Abd El-Shafi, Researcher, Glass Res. Dept., NRC, for his interest and fruitful discussions during the work on infrared spectral data.

Special thanks are due to the president of the National research Center, Cairo for financing the thesis .

CONTENTS

Page List of tables **List of Figures Abstract CHAPTER ONE** INTRODUCTION......1 1.1 Glass and glassy state...... 1.2.4 Water in phosphate glasses20 1.2.8 Fundamental differences between phosphate glasses and other glasses...........26 1.6.5 Chemical durability of phosphate galsses41 1.6.6 Dissolution mechanisms of phosphate glasses42 1.7.2 Colors produced by copper in glass45

	Page
CHAPTER TWO	_
LITERATURE REVIEW	48
2.1 Optical studies	
2.2 Electrical studies	
2.3 Chemical durability and chemical analysis studies	
CHAPTER THREE	
EXPERIMENTAL	58
3.1 Preparation of glass samples	
3.1.1 Raw material	
3.1.2 Melting and annealing	
3.2 X-ray diffraction	
3.3 Density and molar volume	
3.4 Thermal expansion.	
3.5 Infrared spectroscopy measurements	
3.6 Chemical determination of Cu-ion states	
3.6.1 Total copper determination	63
3.6.2 Determination of Cu ⁺ - ion content	
3.6.3 Determination of Cu ²⁺ - ion content	
3.7 ICP analysis	
3.8 Chemical durability determination	
3.8.1 Preparation of glass slabs	
3.8.2 Procedure for determination of chemical duability	
3.9 Electrical measurements	
CHAPTER FOUR:	
RESULTS	69
4.1 Density and molar volume	69
4.1.1 Binary copper phosphate glasses	69
4.1.2 Ternary lead-copper phosphate glasses	69
4.1.3 Ternary zinc copper phosphate glasses	73
4.1.4 Ternary alkali and alkaline earth copper phosphate glasses	
4.2 Thermal expansion	77
4.3 IR measurement	86
4.3.1 IR of binary copper phosphate glasses	86
4.3.2 IR of ternary lead copper phosphate glasses	86
4.3.3 IR of ternary zinc copper phosphate glasses	92
4.3.4 Ternary alkali copper metaphosphate glasses	95

	Page
4.4 Chemical estimation of copper ions	98
4.4.1 Copper ions in binary copper phosphate glasses	98
4.4.2 Copper ions in ternary copper phosphate glasses	98
4.4.3 Copper ions in ternary zinc phosphate glasses	98
4.4.4 Copper ions in ternary alkali and alkaline earth copper phosphate glasses	103
4.5 Chemical durability determination	104
4.5.1 Chemical durability of binary copper phosphate glasses	104
4.5.2 Chemical durability of ternary lead copper phosphate glasses	104
4.5.3 Chemical durability of ternary zinc copper phosphate glasses	111
4.5.4 Chemical durability of ternary alkali and alkaline earth copper phosphate	е
glasses	114
4.6 Electrical measurements	117
4.6.1 Electrical condctivity of binary copper phosphate glasses	117
4.6.2 The electrical conductivity of ternary copper containing phosphate glass	ses117
CHAPTER FIVE	
DISCUSSION	121
5.1 Density and molar volume	121
5.1.1 Binary copper phosphate glasses	122
5.1.2 Ternary lead copper phosphate glasses	123
5.1.3 Ternary zinc copper phosphate glasses	123
5.1.4 Ternary alkali and alkaline earth copper phosphate glasses	123
5.2 Thermal expansion	125
5.2.1 General considerations	125
5.2.2 Thermal expansion of binary copper phosphate glasses	126
5.2.3 Thermal expansion of ternary lead copper phosphate glasses	128
5.2.4 Thermal expansion of ternary zinc copper phosphate glasses	129
5.2.5 Thermal expansion of ternary alkali and alkaline earth copper phosphate	
glasses	
5.3 The IR properties of copper phosphate glasses	131
5.3.1 Binary copper phosphate glasses	
5.3.2 Ternay lead copper phosphate glasses	133
5.3.3 Ternay zinc copper phosphate glasses	
5.3.4 Ternay alkali and alkali copper phosphate glasses	
5.4 Cu ²⁺ / cu _{tot.} ratio in phosphate glasses	
5.4.1 General consideration.	
5.4.1.1 Factors affecting, Cu ²⁺ / cu ⁺ equilibria	142

	Page
5.4.1.2 The ellingham diagram and Cu ²⁺ / cu ⁺ equilibria	143
5.4.2 Effect of glass composition on Cu ²⁺ / cu _{tot} ratios	144
5.4.2.1 Binary copper phosphate glasses	144
5.4.2.2 Ternay lead copper phosphate glasses	
5.4.2.3 Ternay lead zinc copper phosphate glasses	
5.4.2.4 Ternay alkali and alkaline earth copper phosphate glasses	
5.5 Chemical durability	150
5.5.1 Chemical durability of binary copper phosphate glasses	
5.5.1.1 The compositional region : P ₂ O ₅ 50 mol%	150
5.5.1.2 The compositional region : P ₂ O ₅ > 50 mol%	152
5.5.2 Role of PbO for increasing the chemical durability of copper phosphate	
glasses	155
5.5.3 Effect of ZnO on the chemical durability of copper phosphate glasses	157
5.5.4 The chemical durability of the alkali and alkaline earth -containing copper	
phosphate glasses	158
5.6 Electrical conductivity	
5.6.1 General consideration	159
5.6.2 Electrical conductivity of binary copper phosphate glasses	160
5.6.3 Electrical conductivity of ternary copper containing phosphate glasses	
Summary and conclusions.	166
References	174
Arabic summary	

List of Tables

Page 59 Table 1 Compositions of the glasses studied. Table 2 Composition, density and molar volume of binary copper 70 phosphate glasses studied. Table 3 Composition, density and molar volume of ternary lead copper 70 phosphate glasses studied. Table 4 Composition, density and molar volume of ternary zinc copper | 74 phosphate glasses studied Table 5 Composition, density and molar volume of ternary alkali and 74 alkaline earth copper phosphate glasses studied. Table 6 Thermal expansion coefficient (α), transformation temperature 77 (Tg) and softening temperature (Ts) of some binary copper phosphate glasses. Table 7 Thermal expansion coefficient (α), transformation temperature 81 (Tg) and softening temperature (Ts) of ternary lead copper phosphate glasses. Table 8 Thermal expansion coefficient (α), transformation temperature 81 (Tg) and softening temperature (Ts) of ternary zinc copper phosphate glasses. Table 9 Thermal expansion coefficient (α), transformation temperature | 81 (Tg) and softening temperature (Ts) of ternary alkali and alkaline earth copper phosphate glasses. Table 10 Frequencies ranges characteristic of the IR bands related to the stretching and bending vibration of various structural groups in phosphate glasses. Table 11 Frequencies of the IR active modes of binary CuO-P2O5 89 glasses in the 200 - 2000 cm⁻¹ range.

Table 12 Frequencies of the IR active modes of ternary xPbO-(50- 91 x)CuO-50P ₂ O ₅ glasses in the 200 - 2000 cm ⁻¹ range. Table 13 Frequencies of the IR active modes of ternary xZnO-(50-x) 94 CuO-50P ₂ O ₅ glasses. Table 14 Frequencies of the IR active modes of ternary 20R ₂ O-30 CuO- 94 50P ₂ O ₅ glasses.
Table 13 Frequencies of the IR active modes of ternary xZnO-(50-x) 94 CuO-50P ₂ O ₅ glasses. Table 14 Frequencies of the IR active modes of ternary 20R ₂ O-30 CuO- 94
CuO-50P ₂ O ₅ glasses. Table 14 Frequencies of the IR active modes of ternary 20R ₂ O-30 CuO- 94
Table 14 Frequencies of the IR active modes of ternary 20R ₂ O-30 CuO- 94
50P ₂ O ₅ glasses.
Table 15 Composition, dissolution rate and Cu ²⁺ /Cu _{tot.} ratio of binary 99
copper phosphate glasses studied .
Table 16 Composition, dissolution rate and Cu ²⁺ /Cu _{tot} , ratio of ternary 99
lead copper phosphate glasses studied
Table 17 Composition , dissolution rate and Cu ²⁺ /Cu _{tot.} ratio of ternary 101
zinc copper phosphate glasses studied
Table 18 Composition, dissolution rate and Cu ²⁺ /Cu _{tot.} ratio of ternary 101
alkali and alkaline earth copper phosphate glasses studied.
Table 19 Weight loss per unit surface area (gm/cm²) of binary copper 105
phosphate glasses treated with distilled water at 70°C for
different periods of time.
Table 20 Weight loss per unit surface area (gm/cm ²) of ternary lead 105
copper phosphate glasses treated with distilled water at 70°C
for different periods of time.
Table 21 Weight loss per unit surface area (gm/cm²) of ternary zinc 110
copper phosphate glasses treated with distilled water at 70°C
for different periods of time.
Table 22 Weight loss per unit surface area (gm/cm²) of ternary alkali and 110
alkaline earth copper phosphate glasses treated with distilled
water at 70°C for different periods of time.
Table 23 The ratios R (=[P]/[Cu]) of batch compositions, prepared glass 151
samples, and solutions of corroded samples (as a result of
corrosion experiment) for different copper-phosphate glasses.

List of Figures

		Page
Fig.1	Volume-temperature relation between the crystalline, glassy and	3
L	liquid states .	<u></u>
Fig.2	Expansion of glass as a function of temperature.	3
Fig.3	(a) Basic building block for silica glass SiO ₄ tetrahedra	7
	with all four oxygens bridging between neighboring tetrahedra.	
)	(b)Definition of the bond angles β and the torsion angles α_1 and α_2	
	(c) Schematics of the silica glass network , defining the 'bond angle'	
	and the ring structure .	
Fig.4	Two-dimensional representation of the structure of sodium	9
	silicate glass .	
Fig. 5	Suggested structure of an alkali aluminosilicate glass with Al+3	11
<u></u>	as a network modifier showing octahedrally coordinated Al ⁺³ .	
Fig. 6	Configuration of boroxol group	12
Fig. 7	The various borate group postulated to exist in alkali borate	12
	glasses having less than 34 mol% alkali .	
Fig. 8	Structural models for alkali borate glasses .	12
Fig. 9	Schematic representation of the effect on the structure of	19
	phosphate glasses with the addition of alkali modifier (M ₂ O)	
Fig. 10	Composition dependence of the fraction of Qi sites in	19
}	Na ₂ O+H ₂ O +P ₂ O ₅ glasses as determined by ³¹ P Mas-NMR and	
	Raman spectroscopy	
Fig.11	Composition dependence of the ³¹ P Mas-NMR spectra in the	25
Ì	series $x(Na_2O+H_2O)+(1-x)P_2O_5$, where in (a) $x=0.25.(b)x$	
	=0.40 (c) x = 0.45, (d) = 0.5, (e) =0.53, and (f) x=0.56.	

Fig.12	Dependence of chemical shift of ³¹ P nucleus on state of	25
	depolymerization . As the P nucleus is surrounded by more	
	nonbridging oxygens, chemical shifts move to more positive	
	values . A similar trend is seen in silicate glasses .	
Fig.13	A pictorial view of the A-S model	30
Fig.14	Clustering in glass at Tg showing the existence of two	32
	polymorphic structures and residual liquid; the path ways for ion	
	migration are located in the residual liquid.	
Fig.15	Tetragonal distortion of an octahedral d ⁹ - complex .	47
Fig.16	Systematic pushrod dilatometer	61
Fig.17	Three neck flask for determination of Cu ⁺ - ions in phosphate	65
	glasses.	-
Fig.18	DC conductivity cell (section sight)	67
Fig.19	The relation between the density and the CuO-content in the	71
	binary copper phosphate glasses .	
Fig. 20	The relation between the molar volume and the CuO-content in	71
	binary copper phosphate glasses .	
Fig.21	The relation between the density and the PbO content (mol%) in	72
	the ternary lead copper phosphate glasses .	
Fig.22	The relation between the molar volume and the PbO content	72
ļ 	(mol%) in the ternary lead copper phosphate glasses.	i
Fig.23	The relation between the density and the ZnO-content (mol%) in	75
	the ternary zinc copper phosphate glasses .	
Fig.24	The relation between the molar volume and the ZnO-content	75
	(mol%) in the ternary zinc copper phosphate glases.	
Fig.25	The relation between the density and R ₂ O or RO content (20	76
	mol%) in the ternary 50P ₂ O ₅ -30CuO-20R ₂ O (RO) glasses .	

Fig.26	The relation between the molar volume and R ₂ O or RO content	76
	(20 mol%) in the ternary 50P ₂ O ₅ -30CuO-20R ₂ O (RO) glasses .	
Fig.27	Thermal expansion curves of binary copper phosphate glasses	78
Fig.28	Thermal expansion coefficient of copper containing phosphate	79
	glasses.	<u> </u>
Fig.29	Thermal expansion curves of ternary xPbO-(50-x) CuO- 50P ₂ O ₅	82
l 	glasses.	
Fig.30	Thermal expansion curves of ternary xZnO-(50-x)CuO-50P ₂ O ₅ glasses .	83
Fig.31	Thermal expansion curves of ternary 50P ₂ O ₅ -30CuO- 20R ₂ O	84
	glasses, where R ₂ = Li, Na or K.	
Fig.32	Thermal expansion curves of ternary 50P ₂ O ₅ -30CuO- 20RO	84
	glasses; where R = Mg or Ca .	
Fig.33	IR transmisssion spectra of binary CuO-P ₂ O ₅ glasses .	87
Fig.34	IR transmisssion spectra of ternary xPbO-(50-x)CuO-50P ₂ O ₅	90
	glasses .	
Fig.35	IR transmisssion spectra of ternary xZnO-(50-x)CuO-50P ₂ O ₅	93
	glasses .	
Flg.36	IR transmisssion spectra of ternary 20R ₂ O-30CuO-50P ₂ O ₅	96
	glasses .	<u> </u>
Fig.37	Variation of ([Cu^{2+}] / [Cu_{tot}]) ratio as a fuction of CuO-content	100
	(mol%) in binary copper phosphate glasses .	
Fig.38	Variation of ([Cu ²⁺] / [Cu _{tot.}]) ratio as a function of PbO-content	100
	(mol%) in ternary lead copper phosphate glasses	ļ <u>.</u>
Fig.39	Variation of ([Cu ²⁺] / [Cu _{tot.}]) ratio as a function of ZnO-content	102
	(mol%) in ternary zinc copper phosphate glasses .	