EXTRACTION INVESTIGATIONS ON RADIOACTIVE AMERICIUM AND EUROPIUM

THESIS
SUBMITTED BY
EMAD ELDEEN HASSAN MOHAMED

B.Sc. CHEMISTRY
HOT LABS. CENTRE
ATOMIC ENERGY AUTHORITY

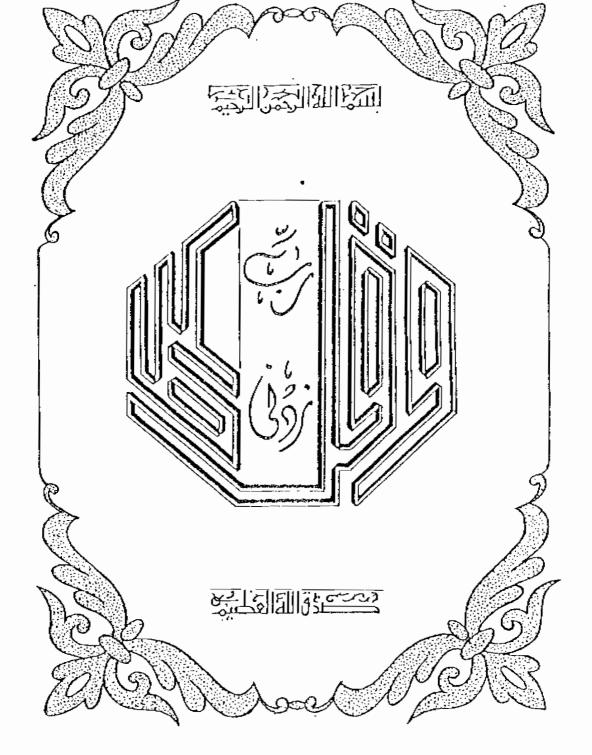
541.38 E. H

OT

CHEMISTRY DEPARTMENT FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

46952

In partial fulfilment of the requirements for the degree


o f

Master of Science

CHEMISTRY

1993

PROF. Dr. MOHAMED FATHY EL-SHAHAT

ElShaht

History I H.

Professor of Analytical and Inorganic Chemistry

Faculty of Science

Ain Shams University

PROF. Dr. HISHAM FOUAD ALY

Professor of Nuclear Chemistry

Vice Chairman of Atomic Energy Authority

PROF. Dr. SALAH MOHAMED KHALIFA

Professor of Radioinorganic Chemistry
Head of Nuclear Chemistry Department of Burnt Fuel.
Hot Laboratories Centre
Atomic Energy Authority.

Prof.Dr. Abd El-Gawad, M. Rabie,

S.M. Molica

Head of Chemistry Department

Acknowledgement	I
List of Tables	III
List of Figures	VIII
Aim of Work	XIX
CHAPTER 1 INTRODUCION	
1.1. Treatment of Spent Nuclear Fuel	1
1.1.1. Main Nulcear Reactions on a Nulcear Fuel Element 1.1.2. Composition of an Irradiated Fuel	2 4
1.1.3. Actinide Radioactivity in a Discharged Uramium Fuel	8
1.1.4. Objectives of Fuel Reprocessing 1.1.5. Fuel Reprocessing	13 14
1.2. Basic Principles of Solvent Extraction of Metals.	16
1.2.1. Classification of Extraction Systems.	17
1.2.2. Extractability of Metal Chelate Complexes	19
1.2.3. Synergic Extraction of Metals	23
1.2.3.1. Sysnergic systems	23
1,2.3.1.1. Chelating agent-solvating solvent system 1,2.3.1.2. Dialkyl phosphoric acid -Neutral	24
phosphorus ester system	27
1.3. Some Aspects on the Radiochemistry of Americium .	28
1.3.1. General.	28
1.3.2. Nuclear Properties of Americium Nuclides	31

33

1.3.3. Atomic Properties of Americium.

1.3.4.1. Oxidation State.	33
1.3.4.2. Disproportionation.	35
1.3.4.3. Solution (electronic transition)	
absorption spectra.	. 36
1.3.4.4 .Thermodynamic functions.	37
1.0.1.1 The may make taken of	31
1.4. Some Aspects on the Radiochemistry of Europium.	37
1.4.1. Nuclear Properties of Eu-Radioisotopes	37
1.4.2. General Properties of Lanthanide Elements	38
1.4.3. Oxidation States and Oxidation Potentials of	
Lanthanides.	42
1.4.4. Atomic and Ionic Radii-Lanthanide Contraction.	46
1.4.5. Complex Formation of Lanthanide Elements.	48
1.5. Liquid-Liquid Extraction Kinetics.	50
1.5.1. Criteria Used to Identify the Extraction Regime.	53
1.6. Literature Survey	57
1.6.1. Solvent Extraction of Eu(III) and Am(III).	57
1.6.2. Kinetics of Separation	66
CHAPTER.2.	
EXPERIMENTAL.	
2.1. Chemicals and Reagents.	70
2.2. Radioactive Tracers.	70
2.2.1. Radioactive Europium (152+154)	71
2.2.2. Radioactive Americium (241).	72
2.3. Preparation of Solutions.	72
2.3.1. Aqueous Solutions	72
2.3.2. Organic Solutions	75

2.4.1. PH-Meter	76
2.4.2. Multichannal Analyzer.	77
2.4.3. Variable Speed Stirrer.	77
2.4.4. Double-Jacket Lewis Cell.	77
2.5. General Procedure.	78
2.5.1. Partition Investigations.	78
2.5.2. Kinetic Investigations.	78
2.6. Reproducibility.	81
CHAPTER 3.	
RESULTS AND DISCUSSION	
3.1. Equilibrium Treatment	89
3.2. Equilibrium Investigations.	93
3.2.1. Extraction from Perchlorate Medium	93
3.2.1.1. Chelate extraction	93
3.2.1.2. Extraction by mixed ligands	94
3.2.1.2.1. Test of synergism	95
3, 2, 1, 2, 2. Effect of hydrogen ion concentrat	ion 95
3.2.1.2.3. Effect of extractants concentrati	on 97
3.2.1.2.3.1. Effect of HTTA concentration	99
3.2.1.2.3.2. Effect of neutral donor ligan	ıđ
concentration.	99
3.2.2. Extraction From Nitrate Medium	108
3.2.2.1. Chelate extraction	108
3.2.2.1.1. Effect of hydrogen ion concentrati	on 108
3.2.2.1.2. Effect of extractants concentration	n 109
3.2.2.1.2.1. Effect of HTTA concentration	111
3.2.2.1.3. Effect of nitrate concentration	113

2 2 2 1 Test of synonyiem	117
3.2.2.2.1. Test of synergism.	
3.2.2.2. Effect of hydrogen ion concentration	119
3.2.2.2.3. Effect of extractants concentration	121
3.2.2.3.1. Effect of Ph ₃ AsO concentration	122
3.2.2.3.2. Effect of HTTA concentration	122
3.2.2.2.4. Effect of nitrate concentration.	124
3.2.3. Separation feasibility	132
3.3. Kinetic Investigations	137
3.3.1. Perchlorate Medium.	137
3.3.1.1. Effect of stirring rate.	137
3.3.1.2. Effect of extractants concentration	142
3.3.1.2.1. Effect of HTTA concentration	142
3.3.1.2.2. Effect of Ph ₃ AsO concentration	145
3.3.1.3.Effect of hydrogen ion concentration	151
3.3.1.4. Effect of temperature	163
3.3.2. Nitrate Medium	173
3.3.2.1. Effect of stirring rate	174
3.3.2.2. Effect of extractants concentration	175
3.3.2.2.1. Effect of HTTA concentration	175
3.3.2.2.2.Effect of Ph ₃ AsO concentration	178
3.3.2.3. Effect of hydrogen ion concentration	188
3.3.2.4. Effect of nitrate concentration	192
3.3.2.5. Effect of temperature.	204
SUMMARY	212
REFERENCES	218

ARABIC SUMMARY

I am deeply thankful to God , by the grace of whom the progress and success of this work was possible.

The author wishes to express his deep gratitude and appreciation to the thesis committee members professors: Prof.Dr. Mohamed Fathy El-Shahat, Prof.Dr. Hisham Fouad Aly, and Prof.Dr. Salah Mohamed Khalifa for their guidance and constructive comments.

Appreciation is expressed to Prof.Dr. M.F.El-Shahat, Professor of Analytical and Inorganic Chemistry, Faculty of Science, Ain Shams University, for sponsoring this thesis and his sincere help, encouragement during the course of study.

The author is obliged to Prof.Dr. H.F.Aly, Prof. of nuclear chemistry, Vice chairman of Atomic Energy Authority for suggesting the topic of study, plan of work and guidance throughout the whole investigations.

Thanks are expressed to Professor Dr. S.M.Khalifa chairman of Nuclear Chemistry Department of burnt fuel, Hot Labs. Centre, Atomic Energy Authority for supervising the experimental work, guidance and his careful review of the manuscript.

The author wishes to express his thanks and appreciation to Dr. Jacqueline Abdel Messih Daoud, Assistant

Authority (A.E.A.) for her unlimited help and co-supervision of all the experimental work and discussions presented in the thesis. Her careful review of the manuscript is highly appreciated.

The author would like also to thank all the staff members, his colleges of the Hot Labs. Centre, A.E.A. for their fine sympathy.

	Page
Table	(1):Elemental constituents in a uranium fuel
	discharged from a PWR7
Table	(2):Composition of 1 t spent uranuim fuel, originally
	enriched to 3.3% in ²³⁵ U after 33,000 MWa/t
	U burn -up at a flux of $3X10^{13}$ n $c_m^{-2}s^{-1}(30MW/t U)$
	at a cooling time of 10y10
Table	(3):Some nuclear properties of americium isotopes32
Table	(4):Some nuclear properties of europium radioisotopes39
Table	(5): The main chemical reagents and extractants used70
Table	(6):Standard Deviation Data for Each Single deviation (D)
	and the Standard Deviation for the Average (D') for the
	System :Am(III)\HTTA-Ph ₃ AsO\CHCl ₃ \ClO ₄ 83
Table	(7):Standard Deviation Data for Each Single deviation (D)
	and the Standard Deviation for the Average (D') for the
	System :EU(III) \HTTA-Ph3AsO\CHCl3\NO_484
Table	(8):Standard Deviation Data for Each Single deviation (D)
	and the Standard Deviation for the Average (D') for the
	System :Am(III)\HTTA-Ph ₃ AsO\CHCl ₃ \NO ₃ 85
Table	(9):Standard Deviation Data for Each Single deviation (D)
	and the Standard Deviation for the Average (D')for the
	System :Am(III)\HTTA-Ph ₃ AsO\CHCl ₃ \Clo ₄ 86
Table	(10):Standard Deviation Data for Each Single deviation (D)
	III

	3 3 4
Table (11):Standard Deviation Data for Each Single deviation (D)
	and the Standard Deviation for the Average (D')for the
	System :Am(III)\HTTA-Ph3AsO\CHCl3\NO388
Table	(12):Extraction constant k ₂₁ of Am(III) by HTTA-Ph ₃ AsO
	mixture in chloroform from perchlorate media at
	constant ionic strength, 0.1M
Table	(13):Extraction constant of Am(III) extracted by HTTA
	in chloroform from nitrate media at constant
	ionic strength, 0.1M115
Table :	(14):Extraction constant of Eu(III) extracted by HTTA
	in chloroform from nitrate media at constant ionic
	strength, 0.1M116
Table	(15):Extraction constant k ₁₂₁ of Eu(III) extracted by
	HTTA-Ph ₃ AsO mixture in chloroform from nitrate
	media at constant ionic strength, 0.1M129
Table	(16):Extraction constant k ₂₁₁ of Am(III) extracted by
	HTTA-Ph ₃ AsO mixture in chloroform from nitrate
	media at constant ionic strength, 0.1M130
Table	(17):Formation constants of Eu(III) and Am(III)
	extracted by HTTA-Ph_AsO mixture in chloroform
	from nitrate media at constant ionic strength, 0.1M133
Table	(18):Effect of time on the extraction of Am(III) in
	the system Am(III)/HTTA-Ph ₃ AsO/CHCl ₃ /ClO ₄ at
	different Ph_AsO concentrations147
Table	(19):Effect of time on the extraction of Eu(III) in
Tante	(15). Effect of time on the extraction of Editit) in

Table	(20):Effect of time on the extraction of Am(III) in
	the system $Am(III)/HTTA-Ph_3AsO/CHCl_3/Clo_4$ at
	different H ⁺ concentrations154
Table	(21):Effect of time on the extraction of Eu(III) in
	the system Eu(III)/HTTA-Ph3AsO/CHCl3/ClO4 at
	different H [†] concentrations156
Table	(22):Effect of time on the extraction of Am(III) in
	the system Am(III)/HTTA-Ph ₃ AsO/CHCl ₃ /ClO ₄ at
	different temperatures165
Table	(23):Effect of time on the extraction of Eu(III) in
	the system Eu(III)/HTTA-Ph3AsO/CHCl3/ClO4 at
	different temperatures167
Table	(34):Thermodynamic functions for the extraction of
	Am(III) and Eu(III) by HTTA-Ph ₃ AsO mixture in
	chloroform from perchlorate media at constant
	ionic strength, 0.1M171
Table	(25):Effect of time on the extraction of Am(III) in
	the system Am(III)/HTTA-Ph ₃ AsO/CHCl ₃ /NO ₃ at
	different Ph ₃ AsO concentrations183
Table	(26):Effect of time on the extraction of Eu(III) in
	the system EU(III)/HTTA-Ph3AsO/CHCl3/NO3at
	different Ph ₃ AsO concentrations185
Table	(27):Effect of time on the extraction of Am(III) in
	the system Am(III)/HTTA-Ph3AsO/CHCl3/NO3at
	different H ⁺ concentrations189
Table	(28):Effect of time on the extraction of Eu(III) in

Table	(29):Effect of time on the extraction of Am(III) in
	the system Am(III)/HTTA-Ph3AsO/CHCl3/NO3 at
	different NO concentrations193
Table	(30):Effect of time on the extraction of Eu(III) in
	the system Eu(III)/HTTA-Ph3AsO/CHCl3/NO3 at
	different NO ₃ concentrations195
Table	(31):Effect of time on the extraction of Am(III) in
	the system Am(III)/HTTA-Ph3AsO/CHCl3/NO3 at
	different temperatures205
Table	(32):Effect of time on the extraction of Eu(III) in
	· the system $Eu(III)/HTTA-Ph_3AsO/CHCl_3/NO_3$ at
	different temperatures207
Table	(33):Thermodynamic functions for the distribution of
	Am(III) and Eu(III) between HTTA-Ph ₃ AsO mixture
	in chloroform and an aqueous nitrate media at
	constant ionic strength, 0.1M209

- Fig.(18).a: Effect of H⁺ concentration on the extraction of Eu(III) by a molar concentration ratio of HTTA: Ph₃AsO equal to 4:1 with a total concentration of 0.04M in chloroform from a nitrate medium of a constant ionic strength (0.1M), at 25[±]0.1°C.
- Fig. (20): Effect of HTTA concentration on the extraction of M(III) by HTTA-Ph₃AsO in chloroform from a nitrate medium of a constant ionic strength (0.1M) ,at 25[±]0.1°C, molar concentration of Ph₃AsO (0.008M) and pH=3.5......125.
- Fig. (21).a: Effect of NO_3^- concentration on the extraction of M(III) by a molar concentration ratio of