

Protecting Wood Used in Various Marine Installations from Wood Degrading Organisms by Treatment with Different Wood-polymer Composites

THESIS submitted

by Samia Habib Mansour

(M.Sc)

Ain Shams University
Polymer and Pigment Department
National Research Centre

*for*The degree of Ph.D in Chemistry

Chemistry Department
Faculty of Science
Ain-Shams University

Prof. Dr. Sayed Mohamed Abd-El-Rahman Professor of Organic Chemistry, Chemistry Department, Ain-Shams University

647.7°

Prof. Dr. Ninette Latif Doss
Professor of Polymer Cehmistry and
Technology National Research Center.

Dr. Nagwa Ebrahim El-Awady Associate Proferssor of Polymer Chemistry and Technology, National Research Center. Dr. Mahmoud Mahamed El-Awady Associate Professor of Polymer Chemistry and Technology, National Research Center.

1993

~ 6953

Protecting Wood Used in Various Marine Installations from Wood Degrading Organisms by Treatment with Different Wood-polymer Composites

Supervisors

Prof. Dr. Sayed Mohamed Abd-El-Rahman

Prof. Dr. Ninette Latif Doss

Dr. Nagwa Ebrahim El-Awady

Dr. Mahmoud Mohamed El-Awady

Approved

Or Sayed M. Alodel Rahman

Prof. Dr. A.F.M.Fahmy

A.F.M. Fahmy

Head of Chemistry Department

Acknowledgement

The author wishes to express her sincere thanks to **Prof. Dr. Sayed M.Abd -El-Rahman,** professor of Organic Chemistry,
Faculty of Science, Ain shams University, for his interest, thoughtful pushes and encouragements.

I would like to express my deep thanks and appreciation to Dr. Mahmoud El-Awady, Associate professor, Dept. of polymers and pigments for suggesting the problem and supervising this study and for his continuous guidance and help throughout this thesis especially in the marine testing.

The author also wishes to express her great appreciation to **Dr. Nagwa El- Awady**, Associate Professor, Department of Polymers and Pigments for suggesting the problem, supervision valuable criticism, sincere advice and great co- operation.

The author also wishes to express her profound gratitude and sincere thanks to Prof. Dr. Ninette Doss. Department of Polymers and Pigments for her great interest, supervision and kind help throughout this thesis especially in the part of polyesters.

Thanks are also due to the research colleagues and assistants at the Department of Polymers and Pigments for their co-operation in various ways.

I would also like to extend my thanks to the Suez Canal authorities at both Port Said and Suez for their valuable help and great concern during the field tests experiments.

ABBREVIATIONS

Styrene	S
Methylmethacrylate	MMA
Acrylonitrile	AN
Styrene/ acrylonitrile	SAN
Triethyleneglycol dimethacrylate	TEGDMA
Tributyltin methacrylate	TBTMA
Polymethyl methacrylate	PMMA
2,2° Azobis- isobutyronitrile	AIBN
Benzoyl peroxide	BZ_2O_2
Methyl ethyl ketone peroxide	MEK
Polyester	PE
Polyester / styrene mixture	PE/S
Wood plastic composite	WPC
General purpose	PE ₁
Poly (1,2- propylene-maleate -phthalate)	PE ₂
poly (oxy-diethylene-maleate -phthalate)	PE ₃
poly (1,2-propylene - maleate-o-carboxymaleananilate)	PE_4
Percent water absorption	%W _{H2} O
Percent monomer retention	%R
Percent polymer load	%L
Percent conversion	%L/R
Percent total volumetric swelling	% S
Percent antiswell efficiency	%ASE
Bis- (tributyltin) oxide	TBTO
Copper - chromium-arsenic solution	CCA
Pentachlorophenol	PCP

Contents

:..

•	
Abbreviations	
Aim of Work	
summary	
Chapter I - Introduction	
1- General considerations	
2- Wood composites	- -
2.1- Wood plastic combinations with monomers	
2.2- Wood plastic combinations with mixture of monomers and prepolymer	
2.3- Wood plastic combinations with polymers	
3- wood preservation in the sea	
3.1- General considerations	•
3.2- Marine borers	
3.3- Wood boring in Egyptian marine waters	_
3.4- Protection against marine borers	
Chapter II - Materials and Methods 1- Materials	
2- Methods	
2.1- Laboratory experiments	
2.1.1- Methods of preparations	
2.1.2- Metheds of wood pretreatment	
2.1.3 - Methods of wood impregnation	
2.1.4 - In situ polymerization of monomers impregnated in pine wood	
by catalyst- heat technique	
2.1.5- Extracted and non-extracted polymer in wpc	
2.1.6- Methods of analysis and testing	
2.1.7- Measurements	
2.2- Field Experiments	~

	Page
Chapter III - Results and Discussion	47-222
PartI - I -Impregnation of white pine wood with vinyl and acrylic	
monomers	47-93
1. Impregnation with pure monomers	
(MMA, SAN mixture)	47-65
2- Impregnation with monomer / solvent and monomer / solvent /	
water	65-83
2-A-Impregnation with MMA / MeOH solutions	66-77
2-B- Impregnation with MMA/ MeOH/ water /system	77-83
2-C- Impregnation by solvent exchange cycle	77-83
3- Impregnation with MMA/ TEGDMA	84-87
4- Impregnation with TBTMA/ MMA	88-93
Part II -2- Impregnation of white pine wood with unsaturated polyeste	er
resins and styrene to produce wpc	94-121
- Structure of PE ₄	95-105
- Effect of reaction conditions on the bulk copolymerization of	f
PE ₁ , PE ₂ , PE ₃ and PE ₄ - with stryrene	105-108
- Effect of polyester structure and initiator type on percent rete	ention 105
(R), percent polymer load and percent conversion (L/	R) of
PE/S- wpc	109-110
- Water absorption (WH2O), volumetric swelling and ant	iswell
efficiency of PE/S- wpc	
- Mechanical properties of wpc formed by the impregnation of	
white pine wood with PE/S mixtures	116-123
part III - Testing in marine environment	124-222
- Competitive interaction between boring and fouling organism	
- Effect of boring activity on untreated control pine wood	

	Page
1- Boring resistance of toxin - free wpc	143-181
Boring activity of test panels impregnated with	
1.1- Pure methyl methacrylate	144-147
1.2- Methyl methacrylate/ methanol mixture	147-153
1.3-Methyl methacrylate / methanol/ water	153-156
1.4- Methyl methacrylate/ triethylene glycol	157
1.5- Styrene / acrylonitrile comonomer	157-163
1.6- Polyester/ stryrene mixture	161-168
- Boring activity versus fouling of toxin-free wpc.	168-181
2- Boring resistance of toxic - wpc	181-194
3- conventional toxins	194-222
3.1 - Test panels impregnated with tributyltin oxide (TBTO)	194-199
3.2- Test panels impregnated with pentachlorophenol (PCP)	199-203
3.3- Test panels impregnated with CCAsolutions	
3.4 - Creosoted test panels	
References	223-239
Ambia Summary	1-5

List of Tables

	Page
TABLE 1. Effect of wood pretreatment and type of solvents on percent monomer retention (R), percent polymer loading (L) of MMA-WPC and SAN-WPC.	49
TABLE 2. Water absorption (W_{H_2O}) and dimensional stability of MMA-WPC and SAN-WPC after 24 hours of immersion in water.	53
TABLE 3. Water absorption (W_{H_2O}) and dimensional stability of MMA-WPC during five weeks of immersion in water.	54
TABLE 4. Water absorption ($W_{\mbox{\scriptsize H}_2\mbox{\scriptsize O}}$) and dimensional stability of SAN-WPC during five weeks of immersion in water.	55
TABLE 5. Extracted and non-extracted polymer in MMA-WPC prepared by wood pretreatment method (A).	61
TABLE 6. Mechanical properties of MMA-WPC and SAN-WPC .	63
TABLE 7. Extracted and non-extracted polymer in wpc prepared by impregnation in MMA / MeOH solutions.	68
TABLE 8 . Water absorption ($\mathrm{W}_{\mathrm{H}_2\mathrm{O}})$ of wpc prepared by impregnation in MMA/ MeOH solutions.	70
TABLE 9 . ASE to water absorption of wpc prepared by impregnation in MMA/ MeOH solutions.	71
TABLE 10. Mechanical properties of wpc prepared by impregnation in MMA / MeOH solutions.	74
TABLE 11. Polymer load (L) of wpc prepared by wood impregnation in MMA/ MeOH/ H ₂ O mixtures.	78
TABLE 12. Water absorption (W_{H_2O}) of wpc prepared by wood impregnation with MMA/ MeOH/ H_2O mixtures and solvent exchange cycle .	79
TABLE 13 . ASE of wpc prepared by wood impregnation with MMA / MeOH/ H ₂ O mixtures.	я1

	Page
TABLE 14. Extracted and Non-extracted polymer content in wpc prepared by MMA/ MeOH/ $\rm H_2O$ mixtures.	82
TABLE 15. Mechanical properties of wpc prepared by wood impregnation in MMA / MeOH/ H ₂ O mixtures.	83
TABLE 16 . Water absorption (WH2O) and antiswell efficiency (ASE) of MMA/ TEGDMA-wpc during four weeks of immersion in water .	86
TABLE 17 . Mechanical properties of MMA / TEGDMA - WPC .	86
TABLE 18. Water absorption (W _{H2O}) and dimensional stability of	
TBTMA / MMA - WPC.	91
TABLE 19. Mechanical properties of TBTMA / MMA-WPC .	93
TABLE 20 .The relative mol , amount of the acid to the glycol in ${\sf PE}_4$	104
TABLE 21 . Bulk copolymerization of PE ₁ ,PE ₂ ,PE ₃ ,PE ₄ with styrene.	105
TABLE 22. Optimum conditions for in situ copolymerization of polyesters PE ₁ ,PE ₂ ,PE ₃ and PE ₄ with styrene.	106
TABLE 23 . Effect of wood pretreatment with solvents on percent retention (R) of PE/S-wpc	108
TABLE 24. Effect of polyester structure and initiator type on percent retention (R), polymer loading (L) and conversion (L/R) of PE/S-WPC.	110
TABLE 25 . Water absorption ($\rm W_{\mbox{\scriptsize H}_2\mbox{\scriptsize O}}$) and antiswell efficiency (ASE) of PE / S - WPC	112
TABLE 26 . Compressive strength and hardness of PE/S - WPC .	120
TABLE 27. Static bending of PE/S - WPC .	123

List of Figures

Fig. 1. Water absorption versus time for MMA-WPC during five weeks of	
immersion in water.	56
Fig. 2. Water absorption versus time for SAN-WPC during five weeks of	
immersion in water.	57
Fig. 3. Effect of wood pretreatment in different solvents on the water	
absorption of MMA-WPC and SAN-WPC.	58
Fig. 4. Antiswell efficiency (ASE) versus time for MMA-WPC and	
SAN-WPC.	59
Fig. 5. Mechanical properties of MMA-WPC and SAN-WPC.	64
Fig. 6. Effect of MMA concentration in methanol on percent polymer loading	
(L).	67
F.g. 7. Polymer load, extracted and non-extracted polymer in wpc prepared by	
impregnation in MMA/MeOH solutions.	67
Fig. 8. Water absorption versus time of immersion in water for wpc prepared	
by MMA/MeOH solutions.	69
Fig. 9. Water absorption versus polymer load of wpc prepared of MMA/MeOH	
solutions.	69
Fig. 10. ASE to water absorption versus MMA concentration.	72
Fig. 11. ASE to water absorption versus time of soaking.	73
Fig. 12. Compressive strength versus polymer load(L) for wpc prepared by	
MMA/ MeOH solutions.	75
Fig. 13. Bending strength versus polymer load (L) for wpc prepared by	
MMA/MeOH solutions	75
Fig. 14. Hardness versus polymer load (L) for wpc prepared by MMA/MeOH	
solutions.	76

Fig. 15. Hardness versus density for wpc prepared by MMA/MeOH solutions.	76
Fig. 16. % water absorption versus polymer load of wpc prepared by MMA/MeOH/ H ₂ O system.	80
Fig. 17. Variation of ASE with polymer load in wpc prepared by MMA/MeOH/H ₂ O impregnation.	80
Fig. 18. Water absorption of MMA/TEGDMA-WPC versus time during four weeks of immersion in water.	87
Fig. 19. Antiswell efficieny (ASE) of MMA/ TEGDMA-WPC versus time during four weeks of immersion in water.	87
Fig. 20. Water absorption versus time for TBTMA/MMA-WPC during 4 weeks of immersion in water.	92
Fig. 21. Antiswell efficiency (ASE) versus time for TBTMA/MMA-WPC during 4 weeks of immersion in water.	92
Fig. 22. Infrared spectrum of PE ₂	97
Fig. 23. NMR spectrum of PE ₂ .	98
Fig. 24. Infrared spectrum of PE ₃	99
Fig. 25. NMRspectrum of PE ₃	100
Fig. 26. Infrared spectrum of PE ₄	102
Fig. 27. NMR spectrum of PE ₄ .	103
Fig. 28. Effect of soaking time on percent water absorption of PE/S-WPC compared to untreated wood.	113
Fig. 29. Effect of soaking time on percent water absorption of PE/S-WPC compared to untreated wood.	113
Fig. 30. Effect of soaking time on percent volumetric antiswell efficiency (ASE) of PE/S-WPC.	115

Fig.		. Effect of soaking time on percent volumetric antiswell efficeincy (ASE) of PE/S-WPC.	115
Fig.	32.	Compressive strength of PE/S-WPC.	117
Fig.	33.	Hardness of PE/S- WPC.	119
Fio	34	Rending strength of PE/S-WPC	120

List of Photos

	Page
Photos. (1-4): Marine borers	19
Photos. (4,5): Heavy accumulation of macrofouling organisms.	126
Photos (6-15): Competitive interaction between boring and fouling organisms	
on untreated white pine wood panels.	127-136
Photos (16-22): Boring activity on untreated control test panels immersed in	1
Port Said region.	139-140
Photos. (23-29): Boring activity on untreated control test panels immersed in	1
Suez region.	141-142
Photos. (30-33): Test panels prepared by pure MMA	145-149
Photos. (34-36): Test panels prepared from MMA/MeOH mixture.	150-152
Photos. (37-39): Test panels prepared from MMA / MeOH/ H ₂ O mixtures.	154-155
Photos. (40,41): Test panels prepared by MMA/TEGDMA	158-159
Photos. (42,44): Test panels prepared by SAN	160-163
Photos. (45-48): Test panels prepared by PE ₂ /S	164-167
Photos. (49-52): Toxin-free wpc immersed in Port Said waters and inspected	1
by the defouling process.	170-173
Photos. (53-56): Toxin-free wpc immersed in Suez waters and inspected by	/
the defouling process.	174-177
Photos. (57-60): Test panels treated with (TBTMA/MMA) comonomer of	г
precopolymer and immersed in Port Said waters.	184, 185
Photos (61-64): Test panels treated with (TBTMA/MMA) comonomer o	г
precopolymer and immersed in Suez waters for 18 months.	187, 188
Photos. (65-68): Test panels prepared by (TBTMA/MMA) comonomer o	r
precopolymer immersed in Port Said waters after defouling	g
process.	189, 190
Photos. (69-73): Test panels prepared by (TBTMA/MMA) comonomer o	r
precopolymer immersed in Suez waters after defouling	g
process.	191, 193
Photos. (74-77): Test panels impregnated with TBTO	197-198
Photos. (78-81): Test panels impreganted with PCP	201-202
Photos. (82-89): Test panels impreganted with CCA	206-209
Photos. (90-109): Creosoted test panels	216-222

Aim of Work

Central Library - Ain Shams University