

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

IMPROVEMENT OF THE PERFORMANCE OF ICE AT DIFFERENT OPERATING CONDITIONS USING ADVANCED METHODS OF ELECTRONIC IGNITION

by

FIKRY Mohamed ABO EL FOUTOH EL SAYED

B. Sc Automotive Engineering, 1977M. Sc Mechanical (power), Engineering, 1990

A thesis Submitted In Partial Fulfillment of The Requirements of the Degree of Doctor of Philosophy In Mechanical (power) Engineering

Supervised by

Prof. Dr. Ahmed Hassan Bawady

Automotive Engineering Department
Faculty of Engineering
Ain Shams University

Dr. Abdul Aziz Morgan

Mechanical Power Department
Faculty of Engineering
Ain Shams University

CAIRO 1998

Ain Shams University Faculty of Engineering

Ph. D. Thesis

Name : Fikry Mohamed Abo El-Foutoh El-Sayed

Degree : Ph.D.

Thesis Title: Improvement of the Performance of I.C.E. at

Different Operating Conditions Using Advanced

Methods of Electronic Ignition.

Examination committee

Signature

1-Prof. Dr. Mahmoud Moustafa Ghonaim

Professor of Mechanical Engineering Faculty of Engineering Ain Shams University

2-Prof. Dr. Mohsen. Salem Radwan

Professor and Associate Dean. Faculty of Engineering at Mattaria University of Helwan

3-Prof. Dr. Ahmed Hassan Bawady

Professor of Mechanical Engineering Faculty of Engineering Ain Shams University m. m. lylanain_

H. Pranady

M. S. Renderan

Statement

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Mechanical Engineering.

The work comprised in this thesis was carried out by:

Fikry Mohamed Abo El-Fotouh El-Sayed in the period from 11/1992 to 2/1998.

No part of this dissertation had been submitted for a degree at any other university.

Signature :

Date :65/2/1998
Signature :

Name

: Fikry Mohamed Abo El-Fotouh El-Sayed

ACKNOWLEDGMENTS:

The author would like to express his deep appreciation to Prof. Dr. Ahmed Hassan Bawady and Dr. Abdul Aziz Morgan for their supervision, continuous guidance and encouragement over the course of this work.

The Author also wishes to thank the technicians' team of the Internal Combustion Engines Laboratory, Faculty of Engineering, Ain Shams University, for their kind co-operation.

ABSTRACT:

Lean mixture combustion is considered as one solution for the reduction of exhaust emissions because of the low concentration of nitrogen oxides as well as carbon monoxide in the exhaust gas. Also it reduce the fuel consumption.

The purpose of this work is to construct an ignition system suitable to be used with lean mixtures which leads to less pollutants in the engine exhaust as well as better engine efficiency and power.

- a) The first stage was directed to design and construct a modified electronic ignition system with improved specifications, such as; two energy levels for the spark (high, 111 mJ / low, 84.5 mJ), wider spark gap, sensitive for the mixture strength (lean / rich), automatic spark advance and spark energy change.
- b) In the second stage a series of tests was conducted on a Peugeot S I E of four cyolinders having 1976 cm3 swept volume and maximum power of 58 kW (1968), once with the conventional Spark Ignition System and then with the modified electronic system.

The effects of spark plug and ignition system variables upon the engine performance were investigated.

In this study, the effecs of spark plug gap width, spark energy, and spark duration were investigated for various engine air-fuel ratios, especially, in the lean mixture region.

In addition to studying each variable independently, the interactions between the variables were also investigated experimentally.

The engine performance parameters measured were: exhaust emissions, specific fuel consumption, engine speed roughness of operation and engine power.

Results showed that the engine produced a better performance with the modified high spark energy ignition system, especially if the spark plug gap was increased to about 1.25 mm. In this case, the engine produced lower exhaust emissions, lower specific fuel consumption, smoother engine operation, and higher engine power.

TABLE OF CONTENTS

Item	Page
ACKNOWLEDGMENT	I
ABSTRACT	II
TABLE OF CONTENTS	IV
LIST OF FIGURES	VII
NOMENCLATURE	ΧI
CHAPTER 1 INTRODUCTION	1
1-1 General.	2
1-2 Mixture ignition.	2
1-3 Background.	3
1-3-1 Ignition spark formation.	3
1-3-2 High voltage generation and energy storage.	4
1-3-3 Ignition timing adjustment.	5
1-4 Battery ignition systems.	7
1-4-1 Conventional coil ignition system.	7
1-4-2 Ignition coil.	8
1-5 Spark advance mechanisms.	8
1-5-1 Centrifugal advance mechanism.	9
1-5-2 Vacuum advance mechanism.	10
CHAPTER 2 IGNITION SYSTEMS AND LITERATURE REVIEW	13
2-1 Introduction.	14
2-2 Induction discharge ignition system.	14
2-2-1 Induction-type pulse generator.	16
2-2-2 Hall-type pulse generator.	17
2-2-3 Advantage of the induction discharge ignition system.	17
2-3 Capacitive discharge ignition system.	18
2-4 Programmable energy ignition system.	22

2-5 Plasma-jet ignition system.	25
2-5-1 Performance of the plasma jet ignition system.	26
2-6 Aim of the present work.	28
CHAPTER 3 PLAN OF INVESTIGATION	30
3-1 Introduction.	31
3-2 Work plan.	31
3-3 Experimental stages.	32
CHAPTER 4 THE EXPERIMENTAL TEST RIG	37
4-1 Introduction.	38
4-2 The experimental test rig.	38
4-3 Main engine data.	40
4-4 Exhaust gas oxygen sensor.	43
4-5 Experimental determination of air/fuel ratio.	45
4-5-1 Direct measurement.	45
4-5-2 Indirect method.	46
4-6 Mixture proportions.	47
4-7 Exhaust gas analyzer.	48
4-8 Electronic switching of the primary current.	51
4-9 Pulse processing system.	53
4-9-1 Pulse processing stages.	53
4-10 Ignition timing control parameters.	57
4-10-1 Fuel mixture strength.	57
4-10-2 Engine speed.	58
4-10-3 Engine load.	59
4-11 Darlington circuits.	60
4-12 Operational amplifier (741 C).	67
4-12-1 Typical characteristics of the (741 C) amplifier.	67
4-13 Voltage regulator (LM 317).	68

4-14 Plotting of the engine running roughness.	69
4-15 Test equipments.	72
4-16 Test procedure.	73
CHAPTER 5 RESULTS AND DISCUSSIONS	75
5-1 Introduction.	76
5-2 Selected specifications of the used ignition systems.	76
5-2-1 Conventional ignition system.	76
5-2-2 Electronic ignition system (low energy level).	77
5-2-3 Electronic ignition system (high energy level).	78
5-3 Ignition systems performance.	78
5-4 Effect of spark gap width.	82
5-5 Engine performance for different engine speeds.	92
5-6 Engine performance for different engine loads.	96
5-7 Effect of ignition system parameters upon engine performance	103
CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS	106
REFERENCES	109
APPENDIX (A)	A-1
APPENDIX (B)	B-1