EFFECT OF POSTURAL CHANGES AND DIURNAL VARIATIONS ON LUNG FUNCTIONS IN ASTHMATIC CHILDREN

THESIS

Submitted in Partial Fulfilment For Master Degree M.Sc. In Pediatrics

By Walid Ibrahim Mohamed (M.B.,B.Cfl.)

618.92238 VI.I

Under Supervision of:

46686

Karima Ahmed Abd El-Khalik

Professor of Pediatrics Faculty of Medicine Ain Shams University

FACULTY OF MEDICINE
AIN SHAMS UNIVERSIDA

1992

TO..

MY MOTHER

ACKNOWLEDGEMENT

I am greatly honoured to express my sincere and deep gratitude to Prof. Dr. Karima Abd El-Khalik, Professor of Pediatrics, Ain Shams University for her support, continuous encouragement and invaluable instructions.

I am really very grateful and deeply indebted to Dr. Tharwat Deraz, Lecturer of Pediatrics, Ain Shams University, for his unfailing help, valuable suggestions and good support which helped me to put this work to its best.

I wish to express my deep gratitude and appreciation to Dr. Mohamed El-Barbary, Lecturer of Pediatrics, Ain Shams University for his kind assistance, continuous help, precious advices and effective efforts.

Finally, deep appreciation is expressed to all staff members and patients of the Out-Patient Pediatric Chest Clinic of Ain Shams University.

The Candidate

CONTENTS

Title	Page No.
INTRODUCTION AND AIM OF THE WORK	
REVIEW OF LITERATURE	
Anatomy of the respiratory system	3
Development of the respiratory system	11
Physiology of respiration	14
Bronchial asthma	29
Pulmonary function tests	57
Normal values	77
Pulmonary function tests in asthmatic children	83
Effect of postural changes and circadian rhythm on lung fun-	
ction in asthmatic children	91
SUBJECTS AND METHODS	103
RESULTS	115
DISCUSSION	153
CONCLUSION AND RECOMMENDATIONS	165
SUMMARY	
REFERENCES	
ARABIC SUMMARY	į

LIST OF TABLES

Table No.	Title	Page No.
1	Biologically active substances metabolized by the lungs	16
2	Pathologic events in asthma attributed to chemical mediators	
	of anaphylaxis	48
3	Clinical manifestations of severe acute asthma	5l
4	Grading of asthma	55
5	Comparison between obstructive and restrictive patterns of	
	pulmonary function tests	86
6	Pulmonary function tests of group (l)	117
7	Pulmonary function tests of group (2)	119
8	Pulmonary function tests of group (3)	121
9	Diurnal variations of PEFR and FEV _l in group (l)	123
10	Diurnal variations of PEFR and FEV1 in group (2)	125
11	Diurnal variations of PEFR and $FEV_{\bar{l}}$ in group (3)	127
12	The postural changes of PEFR% at midday and at night in	
	group (l)	129
13	The postural changes of PEFR% at midday and at night in	
	group (2)	131
14	The postural changes of PEFR% at midday and at night in	
	group (3)	133
15	T-test for PEFR% postural difference at midday in the three	
	groups	134

	ì		
	16	T-test for PEFR% postural difference at night in the three	
		groups	135
ļ	17	T-test for PEFR% diurnal difference in the three groups	136
	18	T-test for FEV ₁ % diurnal difference in the three groups	137
	19	T-test for PEFR% postural difference between the three	191
į		groups at midday	138
	20	T-test for PEFR% postural difference between the three	200
		groups at night	139
	21	T-test for PEFR% diurnal difference between the three groups	140
	22	T-test for FEV _I % diurnal difference between the three groups	
	23	Correlation between PEFR% and FEV _I % at midday, at night	141
_		and diurnal variation within each group	142

LIST OF FIGURES

Figure No.	Title	Page No.
1	The respiratory passages	5
2	Bronchopulmonary segments of the right lung	8
3	Bronchopulmonary segments of the left lung	8
4	Diagrammatic cross-section of a large bronchus	10
5	Mechanism of ciliary movement in the air-passages	10
6	Flow volume loop	21
7	Normal and abnormal flow volume loops	21
8	Intrapleural pressure changes during inspiration and expiration	23
9	Changes in lung volume, alveolar pressure, pleural pressure and	İ
	transpulmonary pressure during normal breathing	23
10	Compliance of the lungs	27
11	Graphical representation of the three types of work accomplished during	
	inspiration	27
12	Proposed pathways in the pathogenesis of bronchial inflammation and	}
	airway hyperresponsiveness	44
13	Cellular interactions leading to eosinophil infiltration and epithelial	
	injury in asthma	45
14	Pathological changes in the airways in asthma	46
15	Morphologic changes in the airways in asthma	46 -
16	Lung volumes and capacities	60
17	Spiregram showing static V.C and dynamic FVC	б 0
18	Spirogram showing FVC	71

İ		
19	Spirogram showing FEV at intervals of 0.5, 1.0, 2.0 and 3.0 seconds	71
20	Peak expiratory flow (PEF)	76
21	Maximum voluntary ventilation (MVV)	76
22	Prediction normogram for children-males	80
23	Prediction normogram for children-females	81
24	Forced expiratory ratios FEV ₁ /VCxl00% in children-boys and girls	82
25	Spirogram showing normal, obstructive and restrictive patterns	87
26	Spirogram showing obstructive versus restrictive patterns	87
27	Vitalograph spirometer	108
28	Principle of operation of vitalograph spirometer	110
29	Identification chart of vitalograph spirometer	110
30	Measurement of lung functions in standing position	113
31	Measurement of lung functions in supine position	113
32	A typical print-out from a vitalograph tracing	114
33	Postural changes of PEFR in group (1)	143
34	Postural changes of PEFR in group (2)	144
35	Postural changes of PEFR in group (3)	145
36	Postural changes of PEFR in the three groups at midday	146
37	Postural changes of PEFR in the three groups at night	147
38	Diurnal variation of PEFR and FEV _l in group (l)	148
39	Diurnal variation of PEFR and FEV ₁ in group (2)	149
40	Diurnal variation of PEFR and FEV ₁ in group (3)	150
4 l	Diurnal variation of PEFR in the three groups	151
42	Diurnal variation of FEV _l in the three groups	152

LIST OF ABBREVIATIONS

4 1 1 1 1 1 1 1 1 1 1 1 1

A.M. : Ante meridiem (before midday).

A.T.S : American Thoracic Society

BHR : Bronchial hyperresponsiveness.

CBC : Complete Blood Count

CCHeD : Closed-circuit helium dilution method

CO₂ : Carbon dioxide

EIA : Exercise Induced Asthma

EpDRF : A putative epithelial derived relaxant factor

ERV : Expiratory reserve volume

FEF_{75-85%}: Forced expiratory flow over the end portion of the curve.

FEV_I: Forced expiratory volume within one second.
FEV_T: Forced expiratory volume during a given time.

 $FEV_{T}\%$: The ratio of FEV_{T} to FVC expressed as a percentage.

FMEF (FEF_{25%-75%)}: Forced expiratory flow over the mid portion of the curve.

FMEFT : Forced mid expiratory flow time.

FRC : Functional Residual Capacity

FVC : Forced vital capacity

GER : Gastroesophegeal Reflux

HLA: Human Leucocytic Antigen

IC : Inspiratory capacity
IgE : Immunoglobulin E

IRV : Inspiratory reserve volume

m² : square meter

MET : Mid expiratory time

mm : millimeter

MMEFR : Maximal mid expiratory flow rate

mmHg : millimeter mercury

ms : millisecond

MVV : Maximum voluntary ventilation

O₂ : Oxygen

p : pressure

P.M. : Post meridiem (after midday).

PEFR : Peak expiratory flow rate
RAST : Radioallergosorbent test
RRP : Resting Respiratory Position
RSV : Respiratory Syncytial Virus

RV: Residual volume
S.D.: Standard deviation
SVC: Slow vital capacity
TAV: Trapped Air Volume

TB : Tuberculosis

TGV (VTG): Thoracic gas volume

TLC : Total lung capacity

 $TV(V_T)$: Tidal volume VC: Vital capacity

 $V_{max\,50}$: Maximal expiratory flow at 50% of vital capacity. $V_{max\,75}$: Maximal expiratory flow at 75% of vital capacity.

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND AIM OF THE WORK

Asthma is the most common chronic lung disease in children and is a leading cause of emergency room visits, hospital admissions, and school absenteeism (Canny et al., 1991).

Assessment of lung function in children is important, not only for the evaluation of functional changes with acute pulmonary disorders but also for longtudinal studies of the prolonged pulmonary effects of respiratory illnesses in early childhood (Darman, 1984).

At least 70% of asthmatic children have their attacks at night. Several mechanisms have been postulated but nocturnal asthma is still not fully understood (Greenough et al., 1991).

A small but detectable diurnal variation in bronchomotor tone is found in normal people (Kerr, 1973). This normal circadian rhythm, that occurs in absence of external stimuli, has a daylight maximum and night-time minimum and the amplitude (maximum - minimum) of this rhythm is significantly greater in asthmatics (Lebowitz et al., 1987).

So, nocturnal asthma probably represents an exaggeration of the normal circadian rhythm of airway calibre (Hetzel and Clark, 1980).

A variety of factors may contribute to nocturnal exacerbations of asthma.

On lying down, healthy subjects have a small fall in PEF while asthmatic subjects show a greater fall. So, supine posture may predispose to asthma occurring at night (Haffejee, 1988).

This is confirmed by **Greenough et al.**, in 1991, who found a significant fall of PEF on adoption of the supine position in asthmatic children.

Aim of The Work:

The aim of this work is to determine the effect of change of posture and diurnal variation on lung function in asthmatic children.