AIN SHAMS UNIVERSITY **FACULTY OF ENGINEERING** CIVIL ENGINEERING - IRRIGATION AND HYDRAULICS

Ph.D. THESI

GROUND WATER QUALITY MODEL WITH DECAYING POLLUTANTS

BY

Eng. NAGY ALI ALI HASSAN M. Sc. C.E.

A Thesis submitted in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY 627.56 N. A IN CIVIL ENGINEERING **IRRIGATION AND HYDRAULICS**

4 a 9 = 7

Supervised by

Prof. Dr. - Eng. Mostafa Mohamed Soliman Professor of Irrigation and Drainage. Irrigation & Hydraulics Dept., Faculty of Engineering, Faculty of Engineering, Ain Shams University.

Assoc. Prof. Dr. - Eng. Mohamed M. Nour El-Din Associate Professor Irrigation & Hydraulics Dept., Ain Shams University,

Cairo, 1993

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Philosophy Doctor in Civil Engineering.

The work included in this thesis was carried out by the author in the Department of Irrigation and Hydraulics, Ain Shams University, from September 1989 to September 1993

No Part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date

Signature:

Name : Nagy Ali Ali Hassan

Examiners Committee

1. Prof. Dr. Kamal H. Hefny

Director of the Research Institute for Groundwater
Water Research Center
Ministry of Public Works and Water Resources
Cairo - Egypt

2. Prof. Dr. Abdelmohsen E. El-Mongy

Professor of Harbors and Hydraulics

Irrigation and Hydraulics Dept.,

Faculty of Engineering Ain Shams Un

Faculty of Engineering, Ain Shams University, Cairo, Egypt.

Motefa M Solaman

3. Prof. Dr. Mostafa M. Soliman

Professor of Irrigation and Drainage Design,
Irrigation and Hydraulics Dept.,
Faculty of Engineering, Ain Shams University,
Cairo, Egypt.

ACKNOWLEDGEMENTS

I am indebted and deeply grateful to my professor and supervisor Prof. Dr. Mostafa M. Soliman for his indispensable advice, encouragement, invaluable guidance and since the start of my M. Sc. study.

Thanks and gratitude are presented to Dr. Mohamed M. Nour El-Din for his great help and continuous encouragement during the progress of this dissertation.

Deep thanks are presented to director and the staff members of the research Institute for Groundwater, Ministry of Public Works and Water Resources, Cairo, Egypt, for their cooperation.

Sincere thanks are presented to Dr. Eng. Ahmed A. Hassan for his great help and invaluable advises.

Thanks are due to Dr. Eng. Ali Talaat, Dr. Eng. Mahmoud Samy, Dr. Eng. Khaled El-Kholy and Dr. Sohair M. for their assistance.

Thanks are due to the staff members of Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University for their cooperation.

Ain Shams University Faculty of Engineering

Dept. of : Irrigation and Hydraulics

Abstract of the Ph.D. Thesis Submitted by : Nagy Ali Ali Hassan

Title of Thesis:

" Ground water Quality Model with Decaying Pollutants"

Supervisors: (1) Prof. Dr. M. M. Soliman

(2) Assoc. Prof. M. M. Nour El-Din

Registration Date: 15-1-1990 Examination Date: 12/9/1993

Abstract:

Groundwater constitutes an important component of many water resource system, supplying for domestic use, for industry, and for agriculture. Therefore, groundwater must be managed carefully to be the most beneficial use. Good management requires the ability to forecast the aquifer's response to planned operations, such as pumping and recharging. The response may take the form of changes in water levels, changes in water quality, or land subsidence. Any planning measures to consider mitigation, clean-up operations, once contamination has been detected in the saturated or unsaturated zones, requires the prediction of the path and the fate of the contaminants in response to the planned activities. For most practical problems, because of the heterogeneity of the considered domain, the irregular shape of its boundaries, and the nonanalytic form of various source functions, only a numerical model can provide the required forecasts. In this work, a numerical model has been developed to simulate the groundwater flow and conservative and nonconservative pollutant transport through the saturated porous media. The Finite Element Method has been used to solve the partial differential equations that govern the groundwater flow and solute transport. Problems with available analytical or numerical solutions have been used in order to verify the capability of the model in simulating the different field situations in one- or two- or three-dimensions. The model has been applied to a selected region in the East Nile Delta in Egypt in order to calibrate the aquifer properties. Also the has been applied to hypothetical three-dimensional problems which may be occurred in the real world. can be used efficiently concluded that the model simulating and predicting the successfully in conservative and nonconservative pollutants in aquifers under a variety of conditions with the minimum of simplifying assumptions.

NOTATION

a	Compressibility of water	$[LT^2M^{-1}]$
A _{ij}	Conductance matrix	$[L^2T^{-1}]$
A _e	Elemental area	[L ²]
$\mathtt{a}_\mathtt{T}$	Transversal dispersivity	[L]
$\mathtt{a}_\mathtt{L}$	Longitudinal dispersivity	[L]
$\mathbf{a}_{\mathbf{v}}$	Vertical dispersivity	[L]
B _{ij}	Storage matrix	[L ²]
b	Compressibility of the aquifer	$[LT^2M^{-1}]$
b'	Thickness of the layer that represents the stream	ı
	bottom.	[L]
С	Concentration of the solute	$[ML^{-3}]$
Cn	Courant number	
C "	Ratio between the mass held on the solid surface a	and the
	mass of the solids in solution	
Cin	Concentration of the inflowing water in the case of	£
	infiltration or the average concentration in the a	aquifer
	in the case of abstraction of water	[ML-3]
ď,	Effective grain diameter	[L]
di	Thickness of the aquitard	[L]
D'i	j Hydrodynamic dispersion-diffusion coefficient	$[L^2T^{-1}]$
D_{md}	Molecular diffusion coefficient	$[L^2T^{-1}]$
Do	Diffusion coefficient in a free water system	$[L^2T^{-1}]$
	At Time step size	[T]
Δ	Elemental cross-sectional area of cubic element	
	perpendicular to the pore-water velocity	$[L^2]$

Element number erfc(x) Complementary error function= 1- erf(x); IL^21 Gii Capacitance matrix $[LT^{-2}]$ g Gravity acceleration [L] h Hydraulic head $[L^2]$ k Permeability [LT-1] Kij Hydraulic conductivity tensor [LT⁻¹] K_{vi} Vertical hydraulic conductivity of the aquitard L^3M^{-1} Ka Distribution coefficient Hydraulic conductivity of the layer that represents the k' $[LT^{-1}]$ stream bottom $[MT^{-1}]$ J_{disp.} Dispersive flux $[T^{-1}]$ l, Aquitard resistance i T^{-1} λ Decay constant [L] Aquifer thickness N. Total number of elements. $[ML^{-1}T^{-1}]$ μ Viscosity n_e Effective Porosity NP Total number of the nodal points $N_{i}(x, y)$ Shape function. $\int L^2 T^{-1}$ Kinematic viscosity $\partial h/\partial x_i$ Hydraulic gradient in the j-direction; $[ML^{-4}]$ $\partial C/\partial x_i$ Concentration gradient in the direction i P, Peclet number $[L^2T^{-1}]$ Pij Solut tran. conductance matrix L3T-1 tQ; Sink or source flow rate at the node i Concentration of the solute of a source or sink of a OC' $[ML^{-3}T^{-1}]$ strength which is assumed to be known

q_{i}	Average discharge in the direction i	[L3T-1L-2
T _{liquid} Water filled area perpendicular to the direction of		
	Darcy's velocity	[L2]
Re	Reynold's number	
ρ	Density of water	[ML-3]
R	Retardation factor.	
r	Distance from the pumped well	[L]
ρ_b	Bulk density of the porous media	[ML ⁻³]
Pary	, Dry matrix material	[ML ⁻³]
S	Storativity of the aquifer	
s _o	Specific storativity)	[L-1]
T	Transmissivity of the aquifer	$[L^2T^{-1}]$
t	Time	[T]
t.5	Half-life of the isotop	[T]
V	Velocity resultant	[LT ⁻¹]
V_{b}	Elemental bulk volume	[L3]
v_{e}	is the volume of the element	[L ³]
W(u,r/B) Hantush well function		
∇	vectorial-delta $(\partial/\partial x + \partial/\partial y + \partial/\partial z)$	[L-1]
!	the factorial	

au Time factor

CONTENTS

1111111	AGE
Acknowledgment	·i
Abstract	
Notation	
Contents	.vi
List of Figures	. . X
List of Tables	.xvi
Chapter I	
Introduction	1
Research Objectives	4
Chapter II	
Literature review	5
II.1. Groundwater Flow Modeling	5
II.2. Solute Transport Modeling	11
II.2.1. Analytical Solutions	12
II.2.2. Numerical Solutions	16
Chapter III	
The Mathematical Approach	. 30
III.1. Groundwater Flow in Porous Media	30
III.1.1. The Continuity Equation	32
III.1.2. Darcy's Law	35
III.1.2.1. Confined Aquifer	37
III.1.2.2. Leaky Aquifer	38
III.1.2.3. Phreatic Aquifer	38
<pre>III.1.3. Initial and Boundary Conditions</pre>	40
III.1.3.1. Initial Conditions	40
III.1.3.2. Boundary Conditions	41

III.1.3.2.1. First-type Boundary of Prescribed Head41
III.1.3.2.2. Second-type Boundary of Prescribed Flux41
III.1.3.2.3. third-type Semi-pervious Boundary42
III.2. Contaminant Transport in Porous Medium44
III.2.1. The Conservative mechanisms of Solute Transport.45
III.2.1.1. Convection45
III.2.1.2. Molecular Diffusion45
III.2.1.3. Hydrodynamic Dispersion48
III.2.2. The Non-conservative Mechanisms of solute
Transport49
III.2.2.1.Decay49
III.2.2.2.Adsorption50
III.2.2.3. Absorption51
III.2.2.4. Precipition, Co-precipitation, and Dissolution51
III.2.3. General equation for a Nonconservative Solute
Transport System52
III.2.4. Initial and Boundary Conditions53
III.2.4.1. Initial Conditions54
III.2.4.2. Boundary Conditions54
Chapter IV
The Finite Element Formulation56
IV.1. Two-Dimensional Model for Subsurface water Flow56
IV.1.1. Numerical Integration64
IV.1.1.1. The First Integral64
IV.1.1.2. The Second Integral65
IV.1.1.3. The Third Integral
IV.1.2. Elemental Velocity68
IV.1.3. Special Cases

IV.1.3.1. Leaky Aquifer68
IV.1.3.2. Phreatic Aquifer69
IV.2. Three-dimensional Model for Subsurface Water Flow70
IV.3. Integration over Time74
IV.4. The Two-dimensional submodel for Mass Transport75
IV.5. The Three-dimensional Model for Mass Transport78
IV.6. Integration over Time80
IV.7. Stability, Consistency and Convergence80
Chapter V
Model Description82
Chapter VI
Model Verification87
VI.1. Verification of the Groundwater Flow Submodel88
VI.1.1. Two-dimensional Groundwater Flow Problem89
VI.1.1.1. Transient Unconfined Groundwater Flow89
VI.1.2. Three-dimensional Groundwater Flow Problems95
VI.1.2.1. Transient Confined Groundwater Flow95
VI.2. The Mass Transport Submodel96
VI.2.1. One-dimensional Solute Transport Problems100
VI.2.2. Two-dimensional Solute Transport Problems117
VI.2.3. Three-dimensional Solute Transport Problems138
VI.2.3.1.Saltwater intrusion in three-dimensional aquifer145
Chapter VII
Model Application158
VII.1. Groundwater Flow Model in East Delta158
VII.1.1. General description of Study Area158
VII.1.1.1. Geographic Setting

VII.1.1.2. Climatology160
VII.1.1.3. Geology160
VII.1.1.4. Surface Water164
VII.1.1.5. Land Use164
VII.1.1.6. Aquifer Properties166
VII.1.2. Model Construction166
VII.1.3. Model Calibration174
VII.1.4. Unsteady State Calibration175
VII.2. Solute Transport Model in East Delta
VII.2.1. Model Construction185
VII.2.2. Model Calibration187
VII.3. Three-dimensional Model Application189
Chapter VIII
Conclusions and Recommendation208
Appendix I (References)
Appendix II List of program

LIST OF FIGURES

FIGURE	NO. PAGE
III.1	A SCHEMATIC DISTRIBUTION OF SUBSURFACE WATER31
III.2	A CONTROL VOLUME FOR GROUNDWATER FLOW33
III.3	THE LEAKY AQUIFER39
III.4	A RIVER BED SERVING AS SEMIPERVIOUS BOUNDARY43
III.5	A CONTROL VOLUME FOR SOLUTE TRANSPORT46
IV.1	DOMAIN DIVIDED INTO TRIANGULAR ELEMENTS58
IV.2	A TYPICAL SHAPE FUNCTION59
IV.3	LINEAR INTERPOLATION OF HEAD WITHIN ELEMENT61
IV.4	SUBDIVISION OF CUBIC ELEMENTS INTO TETRAHEDRONS71
v.1	GENERALIZED FLOW CHART FOR AQUIFER SIMULATION MODEL85
VI.1	NETWORK OF ELEMENTS FOR PROBLEM NO. 192
VI.2	COMPARISON BETWEEN ANALYTICAL AND NUMERICAL
	SOLUTIONS93
VI.3	COMPARISON OF RESULTS AT NODE 23 FOR PROBLEM NO.1 IN
	2-D WITH VARYING TIME SCHEME94
VI.4	SKETCH FOR PROBLEM NO.297
VI.5	FINITE ELEMENT MESH FOR PROBLEM NO.298
VI.6	COMPARISON OF SOLUTIONS FOR PROBLEM NO.299
VI.7	SKETCH FOR PROBLEM NO.3101
VI.8	NETWORK OF ELEMENTS FOR PROBLEM NO.3 (COARSE MESH)104
VI.9	COMPARISON OF SOLUTIONS USING THREE TIME SCHEME
	WITHOUT DECAY CONSTANT (AT X= 30 m.)105
VI.10	COMPARISON OF SOLUTIONS AT THREE DIFFERENT TIMES
	WITHOUT DECAY CONSTANT106

<u>FIGURE</u>	NO. PAGE
VI.11	FINE NETWORK OF ELEMENT
VI.12	COMPARISON OF SOLUTIONS FOR PROBLEM NO.4 WITHOUT
	DECAY CONSTANT USING FINE MESH AND COARSE MESH111
VI.13	COMPARISON OF SOLUTIONS AT THREE TIME SCHEMES FOR
	PROBLEM NO.3 WITH DECAY CONSTANT (0.0003 DAY-1)AT TWO
	DIFFERENT LOCATIONS113
VI.14	COMPARISON OF SOLUTIONS AFTER DIFFERENT TIMES FOR
	PROBLEM NO.3 WITH DECAY CONSTANT114
VI.14a	COMPARISON BETWEEN THE NUMERICAL SOLUTION WITH AND
	WITHOUT DECAY CONSTANT116
VI.14b	THE REDUCTION PERCENT OF CONCENTRATION FOR THE
	DIFFERENT VALUES OF DECAY CONSTANT116
VI.15	SKETCH DEFINITION FOR PROBLEM NO. 4120
VI.16a	NETWORK OF ELEMENTS FOR PROBLEM NO.4(COARSE MESH)122
VI.16b	NETWORK OF ELEMENTS FOR PROBLEM NO.4(FINE MESH)123
VI.17	COMPARISON OF SOLUTIONS FOR PROBLEM NO. 4 WITHOUT
	DECAY CONSTANT (AT Y= 30 m.)125
VI.18	CONCENTRATION DISTRIBUTION IN mg/l WITHOUT DECAY
	CONSTANT FOR PROBLEM NO.4128
VI.19	COMPARISON OF SOLUTIONS FOR PROBLEM NO. 4 WITHOUT
	DECAY CONSTANT (AT X = 110 m.) AT TWO DIFFERENT
	TIMES129
VI.20	COMPARISON OF SOLUTIONS FOR PROBLEM NO. 4 WITHOUT
	DECAY (AT X = 80 AND 170 m. AFTER 150 DAYS)131
VI.21	COMPARISON OF SOLUTIONS FOR PROBLEM NO. 4 WITH DECAY
	CONSTANT (0.003 DAY ⁻¹) (AT Y= 30 m.)