CHANGES IN INTESTINAL BILE SALTS PATTERN IN PAEDIATRIC GASTROINTESTINAL PROBLEMS

Thesis

Submitted in the Fulfilment of (Ph.D.) Degree Childhood Studies

By

SAMIA ABDEL-WAHED BOSEILA

(M.B., B.Ch. M.Sc. [Pediatrics])

Supervisors

Prof. Dr. KADRY HEFNY

Dean of Institute of Post-graduate
Childhood Studies

Ain Shams University

618.92365

Prof. Dr. IBRAHIM FIAD

Prof. of Pediatrics
Cairo University

Prof. Dr. SOHEIR SALEM

Prof. of Biochemistry
National Research Centre

Prof. Dr. HODA ISSA

Prof. of Bacteriology
Cairo University

Prof. Dr. OSMAN GALAL

Prof. of Pediatrics
National Research Centre

INSTITUTÉ OF PÓST-GRADUATE CHILDHOOD STUDIES AIN SHAMS UNIVERSITY

1990

ACKNOWLEDGMENT

I would like to express my deep gratitude to Professor Dr. Kadry Hefny, Dean of Institute of Postgraduate childhood studies, Ain Shams University, for his keen supervision and valuable advice.

I am deeply grateful to Professor Dr. Ibrahim Fiad, Professor of Pediatrics, Cairo University for his valuable guidance, instructive supervision and encouragement.

It is a pleasure and privilege to acknowledge the support and encouragement of Prof. Dr. Soheir Salem, Professor of Nutrional Biochemistry, National Research Centre. I wish to thank her for her supervision, great patience, valuable suggestions and advice which helped me to complete this thesis. My deep thanks are due to Prof. Dr. Salwa El-Housseiny for her constant encouragement and unlimited help.

My deep appreciation is due to Prof. Dr. Hoda Issa, Professor of Bacteriology, Cairo University for her supervision, sincere help and encouragement throughout this work.

I wish also to record my gratitude to Prof. Dr. Osman Galal, Professor of Pediatrics and head of child health Department, National Research Centre, for his supervision and helpful co-operation.

I wish to record my gratitude to Dr. Mohamed Wasim Nassar, Assistant Professor of Bacteriology Cairo, University for helping me in the bacteriological analysis.

I am also thankful for **Dr. Faiza Hassan**, Assistant Professor of Chemical Pathology, Cairo University for her help in assessment of the biochemical data.

Last but not least I thanks all the members of Child Health Department, National Research centre for their cooperation and support.

CONTENTS

- INTRODUCTION	1
- REVIEW OF LITERATURE	2
* Diarrhea in infancy and childhood: - Mechanism of fluid loss in diarrhea - Types of diarrheal disease - Aetiology of diarrhea - Some forms of chronic diarrhea - Protein Energic Malnutrition and chronic diarrhea	2 3 5 8 24 28
* Bile Acid Metabolism:	33 43 47 53 56
* The Normal Intestinal Microflora:	67 67 68 70 76 81 84
- SUBJECTS AND METHODS	88
- RESULTS	106
- DISCUSSION	168
- SUMMARY AND CONCLUSION	191
- RERERENCES	194
- APPENDIX	264
- ARABIC SUMMARY	

LIST OF TABLES

Table	(1):	Distribution of age and sex of the studied groups	108
Table	(2):	Mean (S.D.) of age. Statistical comparison between the groups	109
Table	(3):	Distribution of cases according to their socioeconomic levels	112
Table	(4):	Mean (S.D.) of different anthropometric traits studied for the whole sample of children	116
Table	(5):	Mean (S.D.) of percentage weight/age. Statistical comparison between the groups .	117
Table	(6):	Mean (S.D.) of percentage length/age. Statistical comparison between the groups	118
Table	(7):	Mean (S.D.) of each of age, wt/age%, length/age% and wt/Ht² in relation to socioeconomic level	120
Table	(8):	Mean (S.D.) of total bacterial count (\log_{10}/ml). Statistical comparison between the groups	
Table	(9):	Mean (S.D.) of aerobic bacterial count (\log_{10}/ml). Statistical comparison between the groups	128
Table	(10):	Mean (S.D.) of anaerobic bacterial count (\log_{10}/ml). Statistical comparison between the groups	
Table	(11):	Frequency of the different types of bacteria among the studied groups	
Table	(12):	Duration of the episode of diarrhea among the chronic and acute diarrhea groups	134
Table	(13):	Correlation between duration of diarrhea and aerobic bacterial count	135
Table	(14):	Correlation between Lactose intolerance and each of total, aerobic and anaerobic bacterial counts	137
Table	(15):	Mean (S.D.) of total bacterial count (\log_{10}/ml) in the different types of PEM	139
Table	(16):	Mean (S.D>) of aerobic bacterial count (\log_{10}/ml) in the different types of PEM	140

Table	(17):	Mean (S.D.) of total bile acids (mmol/l). Statistical comparison of the different groups	
Table	(18):	Mean (S.D.) of conjugated bile acids (mmol/l). Statistical comparison between the different groups	145
Table	(19):	Mean (S.D.) of unconjugated bile acids (mmol/l). Statistical comparison between the different groups	146
Table	(20):	Mean (S.D.) of Tourocholic acid (mmol/l). Statistical comparison between the different groups	148
Table	(21):	Mean (S.D.) of Taurochenodeoxycholic acid and taurochenodeoxycholic No salt (mmol/1). Statistical comparison between the different groups	149
Table	(22):	Mean (S.D.) of glycocholic acid and glycocholic No salt. Statistical comparison between the different groups	150
Table	(23):	Mean (S.D.) of glycochenodeoxycholic acid (mmol/l). Statistical comparison between the different groups	
Table	(24):	Mean (S.D.) of conjugated bile acid (mmol/l) in the different types of PEM	156
Table	(25):	Mean (S.D.) of unconjugated bile acids (mmol/l) in the different types of PEM	157
Table	(26):	Mean (S.D.) of G/T Ratio. Statistical comparison between the groups	158
Table	(27):	Correlation between total bacterial count and total bile acids	159
Table	(28):	Type of food received by the studied infants	161
Table	(29):	Mean (S.D.) of total bacterial count (log ₁₀ /ml) in relation to type of feeding in the different groups	162
Table	(30):	Mean (S.D.) of aerobic bacterial count (log ₁₀ /ml) in relation to type of feeding in the different groups	163
Table	(31):	Mean (S.D.) of anaerobic bacterial count (log ₁₀ /ml) in relation to type of feeding in the different groups	164

Table	(32):	Mean (S.D.) of total bile acids (mmol/l) in relation to type of feeding in the different groups	165
Table	(33):	Mean (S.D.) of conjugated bile acids (mmol/1) in relation to type of feeding in the different groups	166
Table	(34):	Mean (S.D.) of unconjugated bile acids (mmol/1) in relation to type of feeding in the different groups	167

LIST OF FIGURES

Kevi	ew or	. Literature	
Fig	(1):	Pathway of changes of the steroid ring system in bile acid synthesis	6
Fig	(2):	Pathway of side chain 26-oxidation in bile acid synthesis	8
Fig	(3):	Pathway of side chain 25-oxidation in cholic acid synthesis starting with 3q-trihydroxy-SP-cholestone	9
Fig	(4):	Two pathways of synthesis of bile salts in fetal liver 4	9
Fig	(5):	Postulated interrelationships among malnutrition, mucosal injury and bacterial overgrowth leading to persistent diarrhea and malabsorption	3
Sub j	jects	and Methods	
Fig	(I):	Resolution of individual conjugated bile acids in duodenal juice samples 10	0
Fig	(II):	Resolution of individual free bile acids in duodenal juice samples	1
RESU	<u>ILTS</u>		
Fig	(I):	Sex distribution of children of the chronic diarrhea and PEM groups 11	0
Fig	(II):	Sex distribution of children of the acute diarrhea and control groups	.1
Fig	(III)): Histogram showing distribution of children according to their socioeconomic levels 11	.3
Fig	(IV)	: Mean (S.D.) for wt/Ht ² (a) wt/age% (b) and length/age% (c) for the different groups 11	.9
Fig	(V):	Significant correlation coefficient of wt/age% versus social level 12	!1
Fig	(VI)	: Mean total aerobic and anaerobic bacterial count shown among the different groups 13	10
Fig	(VII): Percent of total number of chronic diarrhea as wells as PEM infants who were affected with different types of microorganisms 13	32

Fig	(VIII):	Percent of total number of acute diarrhea as well as normal infants who were affected with different types of microorganisms	133
Fig	(IX):	Correlation between aerobic bacterial count and duration of diarrhea	136
Fig	(X):	Correlation between lactose intolerance and total bacterial count (p=0.001)	138
Fig	(XI):	Histogram showing mean and (S.D.) of total, conjugated and unconjugated Bile acids in the different groups	147
Fig	(XII):	Percentage of individual Bile acids in the chronic diarrhea group	152
Fig	(XIII):	Percentage of individual Bile acids in the PEM group	153
Fig	(XIV):	Percentage of individual bile acids in the acute diarrhea group	154
Fig	(XV):	Percentage of individual bile acids in the control group	155
Fig	(XVI):	Correlation between total bacterial count and total bile acids	159

ABBREVIATIONS

ABBREVIATIONS

ATP Adenosine triphosphate

CA Cholic acid

CDCA Chenodeoxycholic acid

DCA Deoxycholic acid

EHC Enterohepatic circulation

G Glycine

HDL High density lipoprotein

ht. Height

KWO Kwashiorkor

LCA Lithocholic acid

p Probability level

PEM Protein-Energy Malnutrition

r Correlation Coefficient

S.D Standard Deviation

T Taurine

WHO World Health Organization

wt. Weight

 $\frac{-}{x}$ Mean.

INTRODUCTION

INTRODUCTION

In all societies diarrhea and malnutrition are twin health problems inextricably associated with poverty. In developing countries diarrhea accounts for 20-30% of child mortality and is significant cause of growth retardation among surviving children (Scrimshow, 1981). Insufficient consciousness of personal and domestic hygiene, bottle feeding of the infants, lack of knowledge of the origin of the disease and inadequate food hygiene may explain the high incidence of diarrhea in these countries, (Bockemuhl, 1985).

In diarrhea, bile acid disturbances occur in the small intestine including an increase upper unconjugated bile acids in the duodenum in association with bacterial overgrowth and increased fecal bile acid loss and a reduction in bile salt pool size, (Weber et So it was our aim to find out changes al, 1985). occurring in the bile acid pattern and bacterial flora in the duodenum of these children and to find out the factors that may play a role in the delay of recovery from diarrhea.

The impact of the social level of the children particularly in relation to sanitary conditions and type of feeding and weaning was also considered.