

AN ULTRA-COMPACT THREE-PORT DC/DC CONVERTER

By

Amr Sayed Taha Meabed

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

AN ULTRA-COMPACT THREE-PORT DC/DC **CONVERTER**

By

Amr Sayed Taha Meabed

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Essam Mohamed Abul Zahab Dr. Abdelmoamen Osama Mahgoub

Electrical Power and Machines Department

Electrical Power and Machines Department Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

AN ULTRA-COMPACT THREE-PORT DC/DC CONVE`RTER

By **Amr Sayed Taha Meabed**

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

Approved by the Examining Committee:	
Prof. Dr. Essam El-Din Mohamed Abul Zahab	Main Supervisor
Prof. Dr. Khaled Aly El-Metwally	Member
Prof. Dr. Mohamed Bayoumy Abdel Kader Zahran	Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

Acknowledgements

First of all, all thanks go to Allah, the most gracious and merciful for brewing me the reasons that led to completion of this work.

I like to express my deepest gratitude to Prof. Osama Mahgoub for his trust, insight, guidance, and support before, during, and after this work. He was the reason why this work started and also was the reason why this work completed.

I would like to express my deep sincere thanks to Prof. Esaam Abul Zahab for his understanding, support, and patience. His support and understanding were substantial and indispensable for this work to complete.

Finally, I must give the deepest thanks to my supervisor and co-worker Dr. Abdelmomen Mahgoub for his inspiration, help, and support. He provided me with the ideas, energy, and support from the start to the finish of this work.

Table of Contents

Ch	napter 1: Introduction	1
1.1	1 Switch-Mode Power Supplies	2
1.2	2 Challenges Facing Switching Converters	4
	1.2.1 Higher Efficiency Requirement	4
	1.2.2 Higher Power Density Requirement	5
1.3	3 Thesis Outline	<i>6</i>
Ch	apter 2: Application of Magnetic Shaking to Ferrite Core	
Tr	ansformers	7
2.1	1 Introduction	7
2.2	2 Magnetic Materials	7
2.3	3 Origin of Ferromagnetism	8
	2.3.1 Curie Temperature	9
	2.3.2 Magnetization Process	. 11
	2.3.3 The B-H Loop	. 12
	2.3.4 Minor BH Loops	. 14
	2.3.5 Permeability	. 14
2.4	4 Filter Inductor Design	. 15
2.5	5 Magnetic Material Used in SMPS Cores	. 16
	2.5.1 Metal Alloys	. 16
	2.5.2 Powdered Metal Cores	. 16
	2.5.3 Ferrite Core	. 16
2.6	Magnetic Shaking	. 17
	2.6.1 Using PSpice to Simulate the Effect of Magnetic Shaking	. 18
	2.6.2 Obtaining BH Loop Using PSpice	. 18
	2.6.3 Simulation of Magnetic Shaking Using PSpice	. 20
	2.6.4 Boost Converter with Shaking	. 23
2.7	7 Experimental Work	. 25
	2.7.1 The Power Amplifier	. 27
	2.7.2 Integrator	. 28
2.8	8 Effect of Magnetic Shaking on the Ferrite Cores	. 32
	2.8.1 Dependence of BH Curve On Amplitude, Frequency and Waveform of the Applied Shaking Field	2/
	2.8.2 Inserting Shaking Coil in A Boost Converter	
	napter 3: DC Flux Compensation in SMPS Magnetic Cores	
. . []	.a.n.e. , 174 1/11/3 (11111116118811111111111111117167) VIAUHPHI (1111168	7.7

3.1	Core Size Reduction	40
3.2	Core Design	43
3.3	Simulation Results	44
3.4	Experimental Work	48
Cha	pter 4: A Three-Port Bidirectional Buck-Boost Regulator	
Opt	imized for Solar Lighting Applications	51
4.1	Introduction	51
4.2	Power Circuit	51
4.3	Proposed Circuit Operation	54
4.4	Proposed Circuit Analysis:	57
4.	4.1 Battery Charger Circuit Analysis	57
4.	4.2 LED Driver Circuit Analysis	60
4.5	Converter Design	60
4.	5.1 Battery Sizing	60
4.	5.2 Solar Panel Sizing	61
4.	5.3 Inductor Design	62
4.	5.4 Output Capacitor Design	64
4.	5.5 Transistor Design	64
4.6	Proposed Circuit Simulation	65
Cha	pter 5: Conclusions and Future Work	70
Refe	erences	72
	endix A: Filter Inductor Design	
	Filter inductor	
A.2		
	.2.1 Maximum flux density	
	.2.2 Inductance	
	.2.3 Winding area	
	.2.4 Winding resistance	
	.2.5 The core geometrical constant K_g	
A.3		
A	.3.1 Procedure	
	A.3.1.1 Determine core size	
	A.3.1.2 Determine Air Gab Length	
	A.3.1.3 Determine number of turns	
	A.3.1.4 Evaluate wire size	

A.4	Summary of key points	81
Appe	endix B: Magnetics Design Tables	83
B.1	Pot CoreData	83
B.2	EE CoreData	84
B.3	EC Core Data	85
B.4	ETD Core Data	86
B.5	PQCoreData	87
B.6	ETD39 Core Data	88
B.7	Ungapped	88
B.8	Gapped	88
B.9	Coil former and Yoke	89
B.10	Mechanical stress and mounting	89
B.11	Effects of core combination on AL value	90
B.12	Heating up	90
B.13	NiZn-materials	90
B.14	Processing notes	90

List of Tables

Table 2.1: Curie Temperatures for Some Common Magnetic Materials	11
Table 2.2 Boost Converter Component Values	35
Table 3.1: Boost Converter Parameters	40
Table 3.2: Buck-boost regulator parameters	48
Table 4.1: Solar panel data at STC [21]	
Table 4.2: LED module data	62
Table 4.3: Converter design parameters	62
Table A.1: Summery of Basic Quantities need in Inductor Design	80

List of Figures

Figure 1.1: Schematic of a linear mode regulator	1
Figure 1.2: Block diagram of a switching regulator	3
Figure 1.3: Sever Power Systems [2]	
Figure 1.4: Efficiency requirement for AC/DC Converter [5]	5
Figure 1.5: Microprocessor power consumption over the years [6]	5
Figure 1.6: Power density roadmap [7]	
Figure 2.1: BH characteristic of different materials	8
Figure 2.2: Magnetic domains	
Figure 2.3: Domain walls [8]	9
Figure 2.4: Magnetization of a ferromagnetic material. (a): External field = 0 (b):	With
external field applied	11
Figure 2.5: Magnetic moments rotation	12
Figure 2.6: The BH curve of initially un-magnetized material [8]	13
Figure 2.7: BH loop of a magnetic material	13
Figure 2.8: Minor BH loops	14
Figure 2.9: Initial permeability of a material	15
Figure 2.10: Relation between BH loop width and permeability	15
Figure 2.11 Principle of Shaking Process	
Figure 2.12: PSpice model of an inductor coupled with a core	
Figure 2.13: BH loop for the inductor from PSpice simulation	19
Figure 2.14: PSpice model used to obtain minor BH loops	
Figure 2.15: Minor HB loops from PSpice simulation	
Figure 2.16: PSpice model with no shaking applied	
Figure 2.17: Simulation result in case of no shaking applied	21
Figure 2.18: PSpice model with 0.05A shaking current applied	
Figure 2.19: Simulation result with 0.05A shaking current	23
Figure 2.20: PSpice model for the boost converter	24
Figure 2.21: Inductor Current in case of no shaking	24
Figure 2.22: Inductor Current with shaking applied	25
Figure 2.23: Schematic of the experimental setup	26
Figure 2.24: Power amplifier schematic diagram	27
Figure 2.25: S-Domain representation of the pure integrator	
Figure 2.26: Finite DC gain integrator	30
Figure 2.27: PSpice model to compare the response of the pure integrator and the	
DC gain integrator	
Figure 2.28: Frequency response of the pure integrator and the finite DC gain inte	grator
Figure 2.29: Finite DC gain integrator with offset nulling	
Figure 2.30: DC BH curve of the ferrite core used in the experiments. The x-axis	
showing the current to represent the applied magnetic field	
Figure 2.31: BH curve of the ferrite core with and without magnetic shaking	
Figure 2.32 BH Curve of the ferrite core without and with shaking averaged	
Figure 2.33 BH curve of the core with sinusoidal shaking current	
Figure 2.34 BH curve of the core with square wave shaking current	

Figure 2.35: BH curves of the material under different shaking levels	36
Figure 2.36: Inductor Current without shaking	37
Figure 2.37: Inductor current with shaking	37
Figure 2.38: Photo of the experimental setup	37
Figure 3.1: Operating point on the BH loop when inductor current comprises a DC	
component (H_{DC}) and an AC component (ΔH)	38
Figure 3.2: BH loop with DC flux removed	39
Figure 3.3: Converter inductor with no DC bias	39
Figure 3.4: Inductor with bias winding added	40
Figure 3.5: Buck-boost Converter	
Figure 3.6: CCM Steady-state inductor current	41
Figure 3.7: Inductor current at the boundary between CCM and DCM	
Figure 3.8: AC inductor current	44
Figure 3.9: PSpice model of the buck-boost converter with DC bias	45
Figure 3.10: Inductor current without DC bias	45
Figure 3.11: Inductor current with DC bias	
Figure 3.12: BH loop without DC bias	47
Figure 3.13: BH loop with DC bias	
Figure 3.14: Experimental setup	48
Figure 3.15: Photo of the experimental setup	49
Figure 3.16: Inductor current without DC bias	
Figure 3.17: Inductor current with DC bias	50
Figure 4.1: Solar street lighting system block diagram	
Figure 4.2: Power circuit for the conventional solar street lighting system	52
Figure 4.3: Block diagram of standard three-port converter	52
Figure 4.4: Three-port converter proposed in [17]	53
Figure 4.5: Power circuit of the proposed three-port converter	54
Figure 4.6: Proposed circuit in charging mode	54
Figure 4.7: Proposed circuit in LED driver mode	55
Figure 4.8: Charging mode	57
Figure 4.9: Charging mode - Mode (1)	57
Figure 4.10: Charging mode - Mode (2)	58
Figure 4.11: Supply current waveform	
Figure 4.12: Filter capacitor current	59
Figure 4.13: Converter waveforms in charging mode	63
Figure 4.14: PV panel PSpice model	
Figure 4.15: Battery PSpice model	
Figure 4.16: Simulation Model	67
Figure 4.17: Steady-state output voltage	67
Figure 4.18: Steady-state inductor current	
Figure 4.19: Average transistor losses	
Figure 4.20: Average power loss of standard MOSFET	
Figure A.1: Filter inductor employed in a continuous conduction mode buck conver	
(a) circuit schematic, (b) inductor current waveform	
Figure A.2: Filter inductor: (a) structure, (b) magnetic circuit model	75
Figure A.3: Filter Inductor Minor B-H loop	

Figure A.4: Filter inductor equivalent circuit	.76
Figure A.5: Filter inductor: (a) assumed geometry, (b) magnetic circuit	.77
Figure A.6: The winding must fit in the core window area	.78

List of Symbols

 A_c Core Cross Sectional Area

 A_W Wire Area

BMagnetic Flux Density B_{max} Maximum Flux Density

 B_r Remanence

B_{sat} Saturation Flux Density

C Capacitance

 f_s Switching Frequency $f_{shaking}$ Shaking Frequency H Magnetic Field H_c Coercivity

 H_{ext} Externally Applied Field H_m Main Winding Field

 H_s Shaking Field

i. Inverting Input Terminal Current

 i_{+} Non- Inverting Input Terminal Current

*I*₁ Minimum Inductor Current

 I_2 Peak Inductor Current I_a Average Load Current i_c AC Current Component I_{DC} DC Current Component

 i_L Instantaneous Inductor Current

*I*_L Average Inductor Current

I_{max} Maximum Average Inductor Current

I_{mpp} Maximum Power Point Current

*I*_o Average Output Current

 i_R Resistance Current

 I_s Average Supply Current I_{sc} Short-Circuit Current

K Core Couplingk Duty Cycle

 K_g Core Geometrical Factor k_{max} Maximum Duty Cycle k_{min} Minimum Duty Cycle K_u Winding Fill Factor

L Inductance

 L_c Critical Value of the Inductance

*l*_g Air Gab Length

l_m Mean Magnetic Path Length

mT Milli Tesla

N Number of Turns P_{cu} Copper Losses P_{loss} **Power Losses** P_{max} **Maximum Power Output Power** P_{out} Q_c Capacitor Charge Feedback Resistance R_F Load Resistance R_L S Laplace Variable S_1 Switch number 1

 $egin{array}{ll} V_c & ext{Capacitor Voltage} \ V_{cc} & ext{Bias Supply Voltage} \ \end{array}$

 V_{in} Input Voltage

T

 t_1

 V_{mpp} Voltage at Maximum Power

Periodic Time

On Time

 V_o Output Voltage

 V_{oc} Open Circuit Voltage

 V_s Supply Voltage W_I Winding number 1 W_A Core Windows Area

 η Efficiency

 μ Magnetic Permeability μ_i Initial Permeability μ_o Free space Permeability μ_r Relative Permeability μ_D Differential Permeability

 ϕ Magnetic Flux

 ϕ_{DC} DC Component of the Flux ϕ_{AC} AC Component of the Flux

 ϕ_{total} Total Flux

 ΔV_C Capacitor Voltage Ripples ΔB Change in Flux Density ΔH Change in Magnetic Field ΔI Inductor Current Ripples \mathcal{R}_c Core Magnetic Reluctance \mathcal{R}_q Air Gab Magnetic Reluctance

ρ Conductor Resistivity

List of Abbreviations

AC Alternating Current

BJT Bipolar Junction Transistor
CCM Continuous Conduction Mode

DC Direct Current

DCM Discontinuous Conduction Mode

eHEMT Enhancement mode High Electron Mobility Transistor

EMI Electromagnetic Interference

FG Function Generator
GaN Gallium Nitride

HID High Intensity Discharge
HPS High Pressure Sodium
IC Integrated Circuit

IT Information Technology
LED Light Emitting Diode
MLT Mean Length per Turn

MOSFET Metal Oxide Semiconductor Field Effect Transistor

op-amp Operational Amplifier

PV Photovoltaic SiC Silicon Carbide

SMPS Switch Mode Power Supply STC Standard Test Conditions

Abstract

The need for compact size DC power sources is increasingly rising. Several industrial and information technology (IT) sectors demand power supply designers to reduce the overall power supply size while increasing its efficiency. All power supply subsystems are subject to intensive research where their size and efficiency are optimized. The inductive components represent a significant percentage of the total power supply volume. The most common technique to reduce their size is by increasing the switching frequency either directly or through interleaving. In the current work, a different approach is followed. In this work, the core permeability is increased instead. Improving relative permeability of the ferrite cores used in switch-mode power supplies (SMPS) is a challenging task to reduce the requirements of the core size in the circuit. Two methods are introduced in this work. The first method is magnetic shaking that is widely used in shielding applications. An AC component is added to the core of the winding used in SMPS. The relative permeability is improved, causing the inductance of the coil to increase. However, the method is facing some technical difficulties to be integrated in the power circuit. Another method is also introduced by adding a DC magnetic field component equivalent to the DC flux component of the main winding in SMPS. This brings the operating point from the non-linear near saturation region to the more linear region. This not only keeps the inductance constant, but also causes a significant increase in its value. As a result, the core size is dramatically reduced. The principle is explained and the method is verified to reduce the inductor ripple and size requirement.

Another approach is taken to reduce the overall power supply size. Optimizing the number of components is another desired issue in power supply topologies. Reducing the component count results in board size reduction and power density improvement. In the current work, a low component count three-port buck-boost converter is proposed. This converter has only two active components and three passive components. The converter is optimized for renewable energy utilization where energy is stored in batteries for some period and discharged into the load in another period. Solar street lighting is a typical application. The proposed circuit was analyzed, simulated, and proved well suited for the application.