1241/4

SOLID STATE NUCLEAR TRACK DETECTORS AND ITS APPLICATIONS

BY

AHMED MORSY AHMED

539.74 A. M

25136

Department of Physics
University College for Girls
Ain Shams University.

February 1987

145 7

ACKNOWLEDGEMENT

It is a pleasure to thank Professor Dr M.A. Kenawy, Head of Physics Department, University college for Girls, Ain Shams University. For his supervision, encouragement, invaliable advice, friutful discussions and for his constant help throughout the course of this work.

Many thanks are also due to Dr. S.A. Durrani, Supervisor of the Applied Radiation Physics group in the Department of Physics, University of Birmingham, U.K. for his supervision, many useful suggestions, and for his friendly treatment during my stay at the University of Birmingham.

Deep thanks and appreciations are also due to prof. Dr. M.A. Gomma, Radiation Protection Department, Atomic Energy Establisement, Cairo (On leave to Saudia Arabia).

My warmest thanks to Professor J.H. Fremlin for his encouragement and suggestions; and for the privilege of his company at the laboratory's coffee table throughout my stay in Birmingham.

Many thanks are also due to Mr.A.B. W.Nash for his technical assistance and Mr.J.E. James the Department of Physics photographer, for reproducing the photographic illustrations with absolute clarity.

I gratefully acknowledge the moral and financial support of the Government of Egypt.

SYNOPSIS

This thesis attempts to contribute to the understanding of the properties of plastic detectors in order to apply them to the study of problems in nuclear physics and dosimetry.

The first chapter deals with histrical and basic informations concerning the interaction of charged particles with matter and polymers. The track formation models and the etchaple track formation criteria were disscussed briefly.

In the second chapter the properties of the solid state nuclear track detectors (CR-39, LR-115 and CA 80-15) used in this work were reported. Several experiments were carried out to study the influence of the etchant temperature and concentration on the bulk etching rate $V_{\rm H}$. It is found that the bulk etching rate of the CR-39 foils etched in NaOH or KOH solutions of concentrations ranging from 2N to 12N, our data for the variation of the bulk etching rate in different etchant concentration at different temperatures for both NaOH and KOH are in excellant agreement with the relation $V = A \exp E \times KT$. It is observed that for the same molarity and etching temperature, $V_{\rm P}$ is higher in KOH than NaOH.

The camphor content in cellulose nitrate plastics and its low

solubility in the etchant leads to the formation of a colloid layer during the etching which produce significant alternations in the etching properties. A white precipitate is formed at the surface of the cellulose nitrate detector. this precipitate seems to increase at higher etchant concentrations. The measurements for LR-115 have not been entended above 8M because in stronge etchants the surface of LR-115 becomes heavily pitted and correled and th outline of one bracks becomes very orregular. In general, the bulk etching rate increases slowly at low etchant concentrations. and then more rapidly with increasing the etchant concentration.

Since the bulk etching rate differ (for the same letector) from batch to batch due to many reasons, e.g. the adoption of different initiators, initiator concentration and curing cycle. However, the amount of surface removal have to be monitored each time samples were etched.

The critical angle and the track registration efficiency were studied. It is found that, in general the track registration efficiency is 100% at high angles of incidence but the registration efficiency drops sharply for obliquely incident tracks. The critical angle for the alpha tracks is approximately 24, and for the fission fragment tracks is arround 2. It is interesting to note that the number densities in plastic detectors do not fall suddenly to zero

at the critical angle rather, they show a smooth rounding-off near it. This feature may be explained as being due to the finiteness of the collimator aperture and to the energy spectrum of the fission fragments from the break-up of the Cf-252 nucli. The results predicts the existance of different critical angles of etching for different groups of fission fragments, since the track etching rate which depends on the damage produced, will be different for different energy groups of the fission fragments.

The third chapter deals with the equipment which designed to aid the experiments. The electrochemical etching apparatus, the electrochemical etching cells, microprocessor-based image measurement system, programming the microprocessor, the alpha particle irradiation chamber and the scintillator system.

The electrochemical etching (ECE) of CR-39 plastic is discussed in details. It is observed that there is a threshold electric field strength value below which no treeing intiation can occur. Generally the plot of ECE versus the electric field, frequency, etchant concentration, etching temperature and etching time shows a common features in the relation of the track-diameter to any mentioned above parameters. The track diameter increases rapidly, then decreases or/and reaches a plateau.

T

It is possible to express Mason's equation, as applicable to electrochemical etching of polymers, in terms of physically meaningful track-etching parameters. An important parameter, viz. the critical or breakdown electrical stress of the CR-39 plastic, has been obtained experimentally.

In chapter five the environmental effects on the characteristics of track registration in CR-39 were discussed in details. The influence of temperature (ranging from -197°C to 200°C) on the registration properties of CR-39. It is found that, complete annealing of 200°Am alpha particle tracks occurs after 2 h of annealing at 190°C. Total fading of fission-fragment tracks from a 200°C sources takes place after 2h of heating at 250°C. The latter treatment also produces many cracks in the surface of the plastic and brings about a change in its colour.

It is found that, the exposure of the CR-39 to Gamma-ray energy could sensitize the CR-39 plastic and thus improve the \mathbb{Z}/\mathbb{B} threshold for track registration. It is also found that, the exposure of CR-39 plastic to ultraviolet light increases the extent of damage in the latent damage trail, which in turn increases the track etching velocity, i.e. the ultraviolet decreases the critical angle θ_c and increases the CR-39 efficiency.

Chapter six deals with the concentration of radon and its decay products in the general environment and their hazard for the publics. The working level concept and the ICRP recommendations were discussed. A description of the radon and radon daughters measurement techniques also included, and some basic calculations of the radon daughters activity in WL units.

In chapter zeven the advantages of using SSNTD's for radon and thoron measurements were revealed. The scintillator method for rapid assessment of track density was adopted for the radon dosimetry, the tracks were enlarged as a result of applying electrochemical and/or chemical etching. The ZnS:Ag was employed as sintillator material. The sample preparation and the readout methods were described. Several modification to improve the reproducibility of results as well as the efficiency of counting were introduced.

The PPPR and PPPR concentration profils inside long tubes under different conditions of source strength and temperature, and their transport in soil with different moisture content were studied.

Design and performance of a pssive system for radon and thoron measurements, using an electret made in our laboratory. The collection efficiency of the electret for the radon decay products was found to depend upon the relative humidity and radon concentration. This method provides an inexpensive, fast, and accurate means of making radon and thoron measurements

CONTENTS

ACKNOWLEDGEMENT

SYNOPSIS

CHAPTER 1	INTRODUCTION	PAGE
1.1	Historical Background	1
1.2	Interaction of charged particles	
	with matter	3
1.3	The effect of ionizing radiation	
	on polymers	5
1.4	Track formation models	8
	1.4.1 Direct atomic collisions	8
	1.4.2 Thermal spike model	8
	1.4.3 The ion explosion model	10
	1.4.4 Thermalized ion spike model	11
1.5	The etchable track formation criteria	12
	1.5.1 Total energy loss criterion	12
	1.5.2 The primary idization criterion	12
	1.5.3 The restricted energy loss	
	criterion	13
	1.5.4 The secondary energy loss	
	criterion	14
	1.5.5 The primary plus secondary	
	damage criterion	14

CHAPTER 2	ETCHING PROPERTIES OF PLASTIC DETECTORS	<u> </u>
2.1	Introduction	15
2.2	Properties of the SSNT's used	
	in this work	16
	(a) CR-39	16
	(b) CA 80-15 and LR-115	18
2.3	The bulk etching rate measurements	18
2.4	The influence of the etchant	
	temperature and concentration	
	on the bulk etching rate	20
2.5	The critical angle and the track	
	registeration efficiency	24
2.6	Experimental determination of the	
	critical angle	25
CHAPTER 3	EXPERIMENTAL METHODS AND APPARATUS	
3.1	Introduction	28
3.2	The Electrochemical Etching Equipment	28
3.3	The electrochemical etching cells	29
3.4	Microprocessor-based Image Measurement	
	system	30
3.5	The Video Position Analyser	32
3.6	Alpha particle irradiation chamber	32

	3.6	The Z digitizing unit	33
	3.7	Programming the microprocessor	33
	3.8	Performance of the micropocessor-image	
		measuring system	39
	3.9	Alpha particle irradiation chamber	41
	3.10	The scintillator system	42
CHAPTER	<u>4</u>	ELECTROCHEMICAL ETCHING OF CR-39 PLASTIC	
	4.1	Introduction	43
	4.2	Breakdown mechanisms	44
	4.2.	1 Electronic breakdown	45
	4.2.	2 Thermal breakdown	46
	4.2.	3 Electromechanical breakdown	46
	4.2.	4 Discharges in voids	47
	4.3	Electrical and electrochemical treeing	48
	4.4	Electrochemical etching procedure	50
	4.5	Dependence on applied field strength	
		and its frequency	52
	4.6	The influence of the etchant	
		concentration and temperature	57
	4.7	The influence of the etching time	۵۸

The influence of the track density	
on the ECE track diameter	61
The influence of the track-tip angle	
on the treeing intiation	63
Relationship between the etched cone	
angle and the effective radius r	68
ENVIRONMENTAL EFFECTS ON THE CHARACTRI	STICS
OF TRACK REGISTRATION IN CR-39	
ntroduction	72
ne temperature influence	75
The influence of temperature	
on $V_{\mathbf{B}}$ and $V_{\mathbf{T}}$	77
The influence of the temperature on	
CR-39 sensitivity	80
Effect of temperature on track	
diameter and track density	80
Annealing of the latent tracks	
in CR-39	83
	- -
he influence of Gamma-ray on CR-39	
	on the ECE track diameter The influence of the track-tip angle on the treeing intiation Relationship between the etched cone angle and the effective radius r ENVIRONMENTAL EFFECTS ON THE CHARACTRI OF TRACK REGISTRATION IN CR-39 Introduction The influence of temperature on Ve and Ve The influence of the temperature on CR-39 sensitivity Effect of temperature on track diameter and track density Annealing of the latent tracks

85

properties

	5.4 The influence of the ultra-violet or	ı
	on the CR-39 properties	89
CHAPTER 6	THE INCIDENCE AND ORIGIN OF RADON	
	AND ITS DECAY PRODUCTS.	
6.1	Introduction	92
6.2	Radon in the general environment	94
6.3	Radon and daughter concentration	
	in open air	94
6.4	The hazard from radon and its	
	daughters	96
6.5	The Working Level concept	98
6.6	The ICRP recommendations	101
6.7	The measurement techniques	104
	6.7.1 Radon gas measurement	
	techniques	104
	6.7.2 Radon daughter measurement	
	techniques	109
6.8	The working level monitor technique	115
6.9	Calculation of the radon daughters	- 40
	activity in WL units	115

CHAPTER /	RADON AND RADON DAUGHTERS MEASUREMENT	<u>'S</u>
	USING SOLID STATE NUCLEAR TRACK DETEC	TORS
	·	
7.1	Introduction	116
7.2	Rapid assessment of track density	
	by scintillator method	119
7.3	Radon and thoron concentration	
	profils inside the tubes	122
7.4	Migration of radon isotopes into	
	rock and soil pores	126
7.5	SSNTD-electret system for radon	
	and thoron dosimetry	130
7.5.1	Introduction	130
7.5.2	Polarization and depolarization	
	process in thermo-electrets	130
7.5.3	Forming of the electret	133
7.6	Design and performance of a passive	

	system for radon and thoron measurement	cs
	using an electret	134
7.7	Conclusions	140

140