MINERALOGY AND GEOCHEMISTRY OF SOME MINERALIZED ROCKS IN WADI EL - GEMAL, EASTERN DESERT, EGYPT.

Submitted to

The Faculty of Science.

Ain Shams University

for

The Degree of Doctor of Philosophy in Geology

Ry
Ahmed Sayed Eid
M. Phil. (Leeds Univ .

, which 1986

ABSTRACT

The present study is an investigation of the acid type mineralization encountered in the psammitic gneiss, which is the basal unit of the metamorphic rock succession in Wadi Abu-Rsuheid. South Eastern Desert, Egypt. The schist series and horblende gneiss are also studied.

The psammitic gneiss is diveded into two zones; the upper one is mineralized and the lower is non-mineralized. The major mineral constituents in both types are more or less similaer, being quartz and feldspar. The accessory minerals in the mineralized type are much more abundant and include zircon, columbite, cassiterite, thorite, zinnwaldite and some sulphides.

Concerning, the chemical composition, the average oxides in both zones are very close, although some variability is shown in the upper zone. In addition, the mineralized rocks are enriched in Zr, Nb, Sn, Pb, Cu and Li and depleted in Ti in comparison to the lower part of the psammitic gneiss.

A proposed model for the mineralization suggests a chemical squeezing and pushing out of $\rm H_2o$ and other fugitives from the deep seated gneisses and their moving upwards by convection associated with orogenic and metamorphic phases. The nature of the original sediments, being argillaceous towards the top, acted as damming the volatiles, then gas pressure increased in the upper zone, leading to fracturing, soaking, and neomineralization.

Evaluation of the economic minerals, proved that the upper 50-meter zone is enriched with columbite-tantatite, zircon, thorite-thorogummite, cassiterite, zinnwaldite, fluorite and sulphide minerals and can be exploited, besides the placer deposits around the mineralized rock.

The schists in the studied area were differentiated into two series, one lies between the psammitic gneiss (below) and the hornblende gneiss (above). The second is a continuation of the distal melange of Wadi Ghadir. In the first type fragments of oceanic crust are present. On the other hand, hornblende gneiss represents the metamorphosed gabbroic/basaltic rocks.

The geological history can be explained as follow:

- 1- The psammitic gneiss formed on a continental margin or mature island arc.
- 2- The schist of Abu-Rusheid represents part of a metamorphosed melange body thrusted over the psammitic gneiss.
- 3- The homblende gneiss represents part of a dismembered and metamorphosed ophiolite suite, thrusted over the schists.

Obduction of the oceanic crust on the contintental margin took place from East to West, then the first melange body occurred (schist of Abu Rusheid). This old melange has interfingers of the

oceanic crust represented by serpentinite bodics in the Eastern side of Wadi Sikait and around Wadi Abu Rusheid. The layered gabbro is represented by hornblende gneiss. This old convergence cycle was followed by reopening of the sea and a new cycle of convergence led to the formation of a new melange ophiolite complex which is now represented by a second group of schists at Ghadir area.

CONTENTS

	Page .	NO
Abstract		
List of tables		
List of Figures		
ACKNOWLEDGMENTS		
CHAPTER 1 : INTRODUCTION	. 1	
1-1 General	• 1	
1-2 Previous work	. 2	
1-3 Scope of the present study	. 5	
1-4 Methods and techniques of investigation	. 6	
Γ		
CHAPTER 2 : GEOLOGICAL SETTING	16	
2-1 Introduction	• 16	
2-2 Previous concepts	• 16	
2-3 New concepts	. 19	
2-4 Major structures	20	
2-5 Mode of occurrence of the rock units	21	
2-5-1 Psammitic Gneiss	. 22	
a- Non-mineralized psammitic gneiss		
b- Mineralized psammitic gneiss		
2-5-2 Schists and Serpentinite	• 25	
2-5-3 Hornblende Gneiss	28	
2-5-4 Amphibolite	29	
2-5-5 White Granite	- 30	
2-5-6 Pink Granite	• 30	
2-5-7 Pegmatites, Aplites and Quartz veins	• 31	
2-5-8 Later dykes	• 32	,
2-6 Geochronologic sequence in the studied area	a 33	

			Page No.
CHAPTER 3	PETROGRAPH	Y OF THE MINERALIZED ROCKS	35
	3-1 The Ps	sammitic Gneiss	35
	-1-1 The no	on-mineralized psammitic gneiss	37
	-1-2 Minera	alized psammitic gneiss	39
	3-2 Schist	cs	43
	- Biot	tite-rich schist	44
	- Garn	netiferous hornblende biotite schsit	45
	- Quart	zo -feldspathic schist	46
	3-3 Hornbl	Lende gneiss	47
CHAPTER 4	GEOCHEMICA	AL CHARACTERISTICS OF THE PSAMMITIC	
	AND HORNBL	LENDE GNEISSES	49
	4-1 Introd	duction	49
·	4-2 Analyt	cical methods	49
	4-3 The ps	sammitic gneiss	56
	-3-1 Major	elements chemistry	57
	A- Sur	face samples	64
	B- Cor	ce samples	71
	C- Com	npasison	73
	-3-2 Variat	tion parameters and diagrams	74
	-3-3 Trace	elements chemistry	97
	-3-4 Petrog	genesis of the psammitic gneiss	112
	4-4 The ho	ornblende gneiss	116
	-4-1 Major	elements chemistry	117

Pε	age	No.
4-4-2 Variation parameters and diagrams 1	117	
4-4-3 Trace elements chemistry 1	122	
4-4-4 Petrogenesis of the hornblende gneiss 1	124	
4-4-5 A compartive discussion	125	
CHAPTER 5 : MINERALIZATION	128	
5-1 Introduction 1	128	
5-2 Core samples 1	128	
5-3 Treatment of the alluvium samples 1	134	
5-4 Mineralization and paragenesis 1	136	
CHAPTER 6 : SUMMARY AND CONCLUSIONS	144	
REFERENCES 1	156	
ARABIC SUMMARY		

LIST OF TABLES

Tables	No.		Page
٠.		Locality and description of the analysed	
		samples of the mineralized surface psammitic	
		gneiss along Wadi-Rusheid	8
2		Locality and description of the non-mineralized	
		surface psammitic gneiss from Wadi Abu Rusheid-	
		Wadi Sikait area	10
3		Description and location of the analyzed	
	-	hornblende gneiss from the studied area	11
4		Depth, radioactivity and description of the	
		analyzed samples of the drill core No. 1 in	
		the psammitic gneiss of Wadi Abu Rusheid	13
5		Instrumental setting for the analysis of major	
		elements by X-ray fluoresence technique	51
6		Instrumental setting for the analysis of trace	
		elements by X-ray fluoresence technique	52
7		Chemical analyses of the mineralized surface	
		psammitic gneiss from Wadi Abu Rusheid-Wadi	
		Sikait area	58
8		Chemical analyses of the non-mineralized	
		surface psammitic gneiss, from Wadi Abu-	
		Rusheid-Wadi Sikait area	60
9		Chemical analyses of the mineralized	
		psammitic gneiss and their averages, drill	

		Page
	core samples from Wadi Abu-Rusheid	62
10	Chemical analyses of the non-mineralized	
	psammitic gneiss and their averages, drill	
	core samples from Wadi Abu-Rusheid	73
11	Calculated Niggli values of the mineralized	
	surface psammitic gneiss, samples from Wadi	
	Abu-Rusheid	76
12	Calculated Niggli values of non-mineralized	
	surface psammitic gneiss, samples from Abu-	
	Rusheid area	78
13	Calculated Niggli values of the mineralized	
	psammitic gneiss, drill core samples from	
	Abu-Rusheid area	79
14	Calculated Niggli values of the non-	
	mineralized psammitic gneiss, drill hole	
	No. 1 from Abu-Rusheid area	80
15	Standard cell of the surface mineralized and	
	non-mineralized psammitic gneiss	85
16	Srandard cell of the mineralized and non-	
	mineralized core samples from Abu-Rusheid area	86
17	Variations in the average standard cell of the	
	mineralized psammitic gneiss, surface and core	
	samples from Abu-Rusheid area	89

		Page.
18	Correlation coefficient of the major elements	
	of the surface psammitic gneiss	94
19	Correlation coefficient of the major elements	
	of the core samples	95
20	Trace elements distribution of the mineralized	
	surface samples from Abu Rusheid area	99
21	Trace elements analysis of the non-mineralized	
	surface samples from Abu-Rusheid area	100
22	Trace elements analysis of mineralized core	
	samples (from No. 1-22) from Abu Rusheid area	101
23	Trace elements analysis of non-mineralized core	
	samples (from No. 23-36) from Abu-Rusheid area	104
24	Enrichment factor of the average composition	
	of the mineralized psammitic gneiss relative to	
	the non-mineralized rocks, core and surface	
	samples	106
25	Chemical analyses of the hornblende gneiss from	
	Wadi El-Gemal area	118
26	Trace elements (in ppm) in the hornblende gneiss	
	of Wadi El-Gemal area	119
27	The Niggli value of the hornblende gneiss from	
	Wadi El-Gemal area	120
28	Analyses of gabbroid rocks from Wadi Ghadir	
	ophiolite	126

		Page
29	Instrumental setting of Philips and Diaho	rage
	model 8000 X-ray diffractometer	131
30	Mineral contents in wt% of nine selected core	
	samples, of the psammitic gneiss (mineralized),	
	Drill hole No. 1 of Abu Rusheid area	132
31	Results of panning and tabling of the	
	concentrate in alluvium samples	235
32	Calculation of the economic mineral (Zircon),	
	recovered from alluvium samples	137
33	Calculation of the economic mineral columbite	
	recovered from alluvium samples	138
34	Calculation of the economic mineral magnetite	
	recovered from alluvium samples	139
35	Calculation of the economic mineral	
	cassiterite recovered from alluvium samples	140

LIST OF FIGURES

Figures	No. After	page	No.
1	Location map of the studied area	1	
2	Drainage map of Wadi Sikait-Wadi El-Gemal		
	area showing main topographic features	2	
3	Scintillometric anomaly of the acidic		
	mineralization in Wadi Nugrus-Wadi Abu		
	Rusheid area. The radiation field was		
	measured by scintillation monitors, the		
	isolines are labelled by uR/hr	5	
. 4	Sample location map	7	
5	Schematic representation of the different		
	rock units of the drill core No. 1 at Abu-		
	Rusheid area	12	
6	Photogeological map of Wadi Sikait-Wadi El		
	Gemal	16	
7	Schematic diagram showing the field relation		
	of the different units in the studied area		
	and its relation to the schist of the melange		
	body of Wadi Ghadir area	19	
8	Panorama, looking southward from Wadi Abu-		
	Rusheid, showing the underlying psammitic	-	
	gneiss (Ps. G.), overlying schist (Sch.), and		
	the hornblende gneiss (HB.G.), (note the		

Figures No		fter	page	No
	configuration of the contact between the			
	schist and hornblende gneiss).		21	
9	A view showing various colours of			
	mineralized psammitic gneiss	• • •	22	
10	A view showing the gneissose texture, as			
	well as the various colours in the			
	mineralized psammitic gneiss	• • •	22	
11	A view showing obvious banding and gneissose			
	texture in the psammitic gneiss,	• • •	23	
12	A view illustrating banding and foliation			
	in the psammitic gneiss (Ps. G.), at			
	Madinat Nugrus. The rock appears red in colo	our		
	due to iron oxide staining	• • •	23	
13	Contorted quartzite bands within the mica			
	schists at Madinat Sikait	• • •	26	
14	An ancient temple excavated in a talc			
	carbonate pod within the mica schists and			
-	quartzo-feldspathic schists of the east side	2		
	at Wadi Sikait		26	
15	Pebbly schists near Madinat Nugrus, note			
	stretching of the pebbles	• • • •	26	
16	Tightly folded garnetiferous schists near			
	Madinat Nugrus		26	
17	View of wadi Abu-Rusheid looking north,			

Figures No.

After page No.

	showing the contact between the schist	
	(Sch.) bleow and the hornblende gneiss above	
	(HB.)	28
18	Banded structure in the hornblende gneiss at	
	the lower parts of Wadi Abu-Rusheid. This	
	banding could be relict cumulus layering	28
19	Photomicrograph showing cataclastic effect on	
	the psammitic gneiss as a finer grained	
	matrix of quartz	42
20	Photomicrograph showing alternating bands of	
	quartz, plagioclase, and potash feldspar in	
	gneissic texture	42
21	Photomicrograph of the mineralized psammitic	
	gneiss showing hypidiomorphic granular	
	texture	42
22	Photomicrograph showing two generations of	
	quartz in the psammitic gneiss	42
23	Photomicrograph showing large quartz grains	
	surrounded by smaller quartz grains	
	indicating the cataclastic effect induced	
	on the psammitic gneiss, also exhibiting	
	undulose extinction	42
24	Photomicrograph showing alternating bands	

Figures No.	Aft	:er	page	No.
	of small subhedral plagioclase and potash			
	feldspar	٠.	42	
25	Photomicrograph showing idiomorphic			
	apatite (ap.) together with quartz (qz.)			
	feldspar (feld.) and biotite (bi) in			
	gneissic texture	• •	42	
26	Photomicrograph of the mineralized			
	psammitic gneiss showing oligoclase (olg.),			
	perthite (pert.), muscovite (mus.), and			
	apatite (ap.), large anhedral quartz (qz.)			
	and fluorite (fl.)	• •	42	
27	Photomicrograph showing orthoclase perthite			
	(or.) and microline and two generations of			
	quartz	• •	42	
28	Photomicrgraph showing augen-like			
	porphyroblastic texture in psammitic gneiss.	• •	42	
29	Photomicrograph showing chlorite replacing			
	biotite and mylonitised feldspar with			
	different degrees of deformation		42	
30	Photomicrograph showing dark green mica in			
	mineralized psammitic gneiss		42	
31	Photomicrograph showing a dull brown grain			
	of zoned zircon and secondary overgrowth		42	