ON PETRI NETS AND THEIR APPLICATIONS

THESIS
SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS
OF THE AWARD
OF THE (M. Sc.) DEGREE

PRESENTED BY

HALA ABD EL-GALIL EL-SAYED

Supervised By

Prof. Dr. Nashat F. M. Fathy

Department of Mathematics
Faculty of Science, Ain Shams University

Dr. Mahmoud K. A. Khairat

Department of Mathematics
Faculty of Science, Ain Shains University

SUBMITTED TO

Department of Mathematics Faculty of Science Ain Shams University

CAIRO, EGYPT **1996**

On Petri nets and their applications

. *******

thesis advisors

Approval

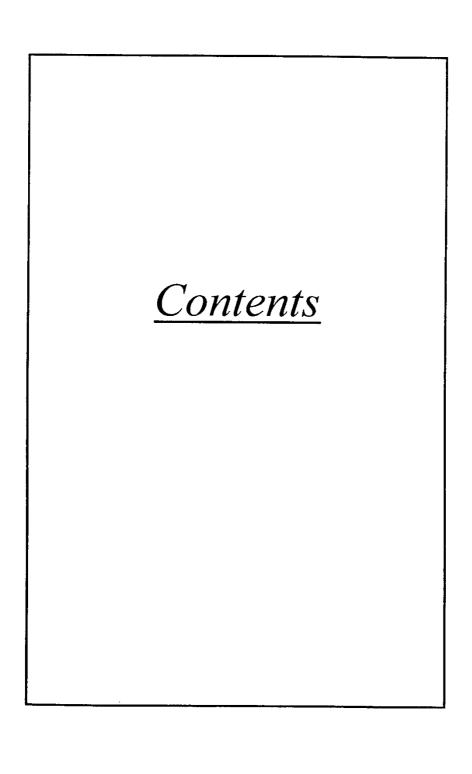
Dr. Nashat Fared Mohamed
Prof. of Mathematics Dept.
Facualty of Science
Ain Shams University

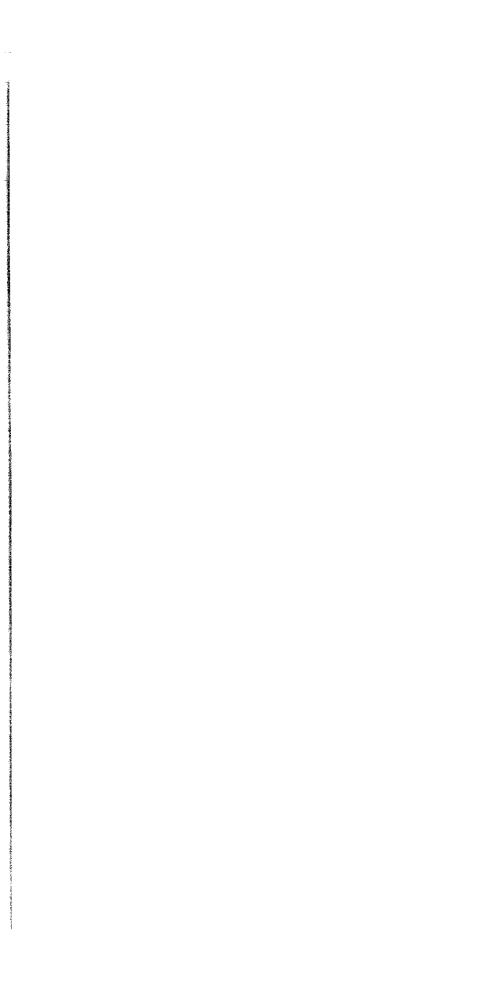
Dr. Mahmoud Khirat Ahmed Khirat Prof. of Computer.Sc. Facualty of Science Ain Shams Univesity (Nashat Jarued)

ا.د انتصارات محمد حسن الشبكي

رنيس قسم الرياضيات كلية العلوم جامعة عين شمس

AKNOWLEDGMENTS


First of all, I do thank Allah for all the gifts he has given me.


I would like to express my utter gratitude and thankfulness to my supervisors, Prof. Dr. Nashat F. M. Fathy, Department of Mathematics, Faculty of Science, Ain Shams University, for suggesting the problem and for his continuous guidance, kind hearted help and valuable discussions.

Deep thanks are also due to Dr. Mahmoud K. A. Khairat, Department of Mathematics, Faculty of Science, Ain Shams University,, for his guidance and co. supervision.

I would also, like to express my deep gratitude to Prof. Dr. Yehia Helaly, Head of the department of Space Science Research, National Institute Research of Astronomy and Geyophsics. and to all staff members of the Department.

Finally, I am truly thankful to all of my family for their support.

CONTENTS

SUMMARY	i
INTRODUCTION	1
CHAPTER I: NOTATIONS AND BASIC DEFINITIONS	
1.1 Petri Net Structure	4
1.1.1 Petri Net Marking	9
1.1.2 Algebraic Representation	11
1.1.3 Petri Net Execution	12
1.2 Event Graph	15
1.2.1 Timed Event Graph	16
1.3 Place Transition Net (P/T- Net)	17
1.3.1 P/T- Marking	18
1.3.2 Linear Algebraic Representation	21
•	
1.4 Condition Event System	25
1.4.1 Conflict and confusion	25
1.4.2 Predicate/Transition Net (Pr/T- Net)	26
1.4.3 Temporal Petri Nets	30
1.5 High Level Petri Nets	33
CHAPTER II: SOME ESSENTIAL FACTS FROM COMPLEXITY	
THEORY AND FINITE AUTOMATON	
2.1 Complexity Analysis	35
2.1.1 An Algorithm on Graphs	39
2.2 Finite Automaton	42

CHAPTER III : SOME MODELS RELATED TO PETRI NET	MODEL
3.1 Vector Addition Systems	44
3.2 Vector Addition Systems with States	48
3.3 Graphs and ordered Sets	51
3.3.1 Karp and Miller Tree	52
3.3.2 Covering Graphs	60
3.4 Regular Constraint Graphs	64
3.5 Maximum Cover Pseudomarkings	71
CHAPTER IV: ANALYSIS OF PETRI NETS	
4.1 Analysis Of Petri Net Properties	76
4.1.1 Safeness	76
4.1.2 · Boundedness	76
4.1.3 Conservation	77
4.1.4 Liveness	79
4.1.5 Reachability	79
4.2 Solution Techniques	80
4.2.1 The Reachability Tree Solution	80
4.2.1.1 Reachability tree analysis	84
4.2.1.2 Advantages of reachability tree	85
4.2.1.3 Disadvantages of reachability tree	86
4.2.2 Karp-Miller Graph	86
4.2.2.1 Specification of some basic questions	87
4 2 2 2 The minimal coverability graph	88

4.2.2.3 Advantages of minimal coverability graph	89
4.3 Reducibility Between Analysis Problems	90
4.3.1 Reachability Problems	91
4.3.2 Liveness and Reachability	96
CHAPTER V : UNDECIDABILITY AND REACHABILITY PROBLE	MS
5.1 Undecidability Results	102
5.1.1 The Polynomial Graph Inclusion Problem	104
5.1.2 Weak Computations	108
5.2 The equality Problem For the Set Of Firing	123
Sequences	
5.3 Self_stabilizing Petri nets	130
5.3.1 A characterization of self_stabilizing	135
bounded ordinary Petri net	
5.3.2 A characterization of self_stabilizing	136
bounded general Petri net	

APPENDIX