# بسم الله الرحمن الرحيم

## SOME RECENT APPROACHES TO TRANSDERMAL DRUG DELIVERY SYSTEMS (TDDS) AND THEIR EVALUATION

#### **A** Thesis

Presented to the Dept. of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University In the partial fulfillment of the requirements for the Degree

of
Doctor of Philosophy

In

Pharmaceutical Science (Industrial Pharmacy)

By

Wael Mahmoud Samy Abo El-Fotoh

(2006)

#### Supervisory Committee

Prof. Dr.

#### Adel Mohamed Motawi

Professor of Industrial Pharmacy, Alexandria University, Alexandria Egypt Prof. Dr.

#### Mohamed Adel El-Egaky

Professor of Industrial Pharmacy, Alexandria University, Alexandria Egypt Prof. Dr.

#### Nazik Abd El-Latif El-Gindy

Professor of Industrial Pharmacy, Alexandria University, Alexandria Egypt

### Dedicated to

The memory of my MOTHER to whom I owe everything in my life.

With deepest love and gratitude.

I would like to express my deepest appreciation to Prof. Dr. Nazik Abd El-Latif El-Gindy Professor of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, for her instructive supervision and constructive suggestions. I would also like to thank her for her patience with me throughout my work

I would like to express a special gratitude for Prof. Dr. **Adel Motawi**Professor of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University,
for his instructive supervision and support.

I would like to express my sincere gratitude to Prof. Dr. **Mohamed Adel El-Egaky**, Professor of Industrial Pharmacy, Faculty of Pharmacy, Alexandria

University, for his guidance and willing assistance.

I would like to express my thanks for the staff of the Industrial Pharmacy

Department, Faculty of Pharmacy, Alexandria University for their kind

assistance.

Finally I would like to thank my wife and my family for their support, patience and encouragement.

#### TABLE OF CONTENT

| ACKNOWLEDGEMENT                                      | i    |
|------------------------------------------------------|------|
| TABLE OF CONTENTS                                    | ii   |
| LIST OF TABLES                                       | viii |
| LIST OF FIGURES                                      | xi   |
| INTRODUCTION                                         |      |
| 1. Skin Histology                                    | 1    |
| 1.1. The Epidermis                                   | 1    |
| 1.2. The Dermis                                      | 5    |
| 1.3. The Hypodermis                                  | 5    |
| 2. Skin Effect on Transdermal Drug Delivery          | 5    |
| 2.1. Skin Condition                                  | 5    |
| 2.2. Regional Skin Sites                             | 6    |
| 2.3. Skin Enzymes                                    | 6    |
| 2.4. Skin Circulation                                | 6    |
| 2.5. Species Variations                              | 7    |
| 3. Other Factors Affecting Transdermal Drug Delivery | 7    |
| 3.1. Drug-related Factors                            | 7    |
| 3.1.1. Partition Coefficient                         | 7    |
| 3.1.2. Degree of Ionization                          | 8    |
| 3.1.3. Molecular Weight                              | 8    |
| 3.1.4. Chemical Structure                            | 9    |
| 3.2. Vehicle-related Factors                         | 9    |
| 4. Theory of Diffusion Across the Skin               | 10   |
| 5. Enhancement of Transdermal Permeation             | 11   |
| 5.1. Physical Enhancement                            | 11   |
| 5.1.1. Sonophoresis                                  | 11   |
| 5.1.2. Iontophoresis                                 | 12   |
| 5.1.3. Electroporation                               | 12   |

| 5.1.4. Microneedles                                   | 16 |
|-------------------------------------------------------|----|
| 5.1.5. Other Skin Piercing Methods                    | 16 |
|                                                       |    |
|                                                       |    |
| 5.2. Chemical Enhancement                             | 18 |
| 5.2.1. The Use of Permeation Enhancers                | 18 |
| 5.2.2. Alteration of the Vehicle                      | 20 |
| 5.3. Biological Enhancement                           | 21 |
| 5.3.1. Use of Prodrugs                                | 21 |
| 5.3.2. Use of Protease Inhibitors                     | 22 |
| 6. Types of Transdermal Drug Delivery Systems (TDDS)  | 22 |
| 6.1. Adhesive Dispersion Type TDDS                    | 22 |
| 6.2. Matrix Diffusion-controlled TDDS                 | 23 |
| 6.3. Membrane Permeation-controlled TDDS              | 23 |
| 6.4. Micro-reservoir Dissolution-controlled TDDS      | 25 |
| 7. Pros and Cons of Using the Transdermal Route       | 26 |
|                                                       |    |
|                                                       |    |
| PART (I)                                              |    |
| INTRODUCTION                                          | 28 |
| EXPERIMENTAL                                          | 30 |
| 1. Materials                                          | 30 |
| 2. Equipment                                          | 30 |
| 3. Method                                             | 30 |
| 3.1. Preparation of Eudragit Films                    | 30 |
| 3.1.1. Plain Films                                    | 30 |
| 3.1.2. Plasticized Films                              | 30 |
| 3.1.3. Plasticized Cross-linked Films                 | 30 |
| 3.2. Evaluation of Mechanical Properties of the Films | 31 |
| 3.2.1. Thickness, Elongation and Tensile Strength     | 31 |

| 3.2.2. Adhesion Evaluation                               | 33 |
|----------------------------------------------------------|----|
| 3.2.2.1. Thumb Tack Test                                 | 33 |
| 3.2.2.2. Peel Adhesion 180° Test                         | 33 |
| 3.3. Moisture Effect                                     | 33 |
| 3.3.1. Water Vapor Transmission of the Films             | 33 |
| 3.3.2. Film Hydration                                    | 33 |
| 3.4. Estimation of Possible Polymer/Additive Interaction | 34 |
| 3.4.1. Thermal Analysis of the Films                     | 34 |
| 3.4.2. IR Spectroscopy                                   | 34 |
|                                                          |    |
| RESULTS AND DISCUSSION                                   |    |
| 1. Effect of Plasticizers                                | 35 |
| 1.1. Mechanical Properties                               | 35 |
| 1.2. Adhesive Properties                                 | 43 |
| 2. Effect of Cross-linker/Plasticizer Combinations       | 46 |
| 2.1. Mechanical Properties                               | 46 |
| 2.1.1. Effect of Cross-linker/DBP Combinations           | 47 |
| 2.1.2. Effect of Cross-linker/DEP Combinations           | 55 |
| 2.1.3. Effect of Cross-linker/triacetin Combinations     | 62 |
| 2.2. Adhesive Properties                                 | 69 |
| 2.2.1. Thumb Tack Test                                   | 69 |
| 2.2.2. Peel Adhesion 180° Test                           | 69 |
| 3. Moisture Effect                                       | 71 |
| 3.3.1. Water Vapor Transmission Through Films            | 71 |
| 3.3.2. Moisture Uptake                                   | 71 |
| 4. Thermal Analysis of the Films                         | 74 |
| 4.1. Differential Scanning Calorimetry                   | 74 |
| 4.1.1. Effect of Plasticizers                            | 74 |
| 4.1.2. Effect of Cross-linkers                           | 83 |
| 4.2. IR Spectroscopy                                     | 83 |

| PART (II)                                                             |    |
|-----------------------------------------------------------------------|----|
| Chapter (I)                                                           |    |
| INTRODUCTION                                                          | 89 |
| EXPERIMENTAL                                                          | 93 |
| 1. Materials                                                          | 93 |
| 2. Equipment                                                          | 93 |
| 3. Method                                                             | 93 |
| 3.1. Method of Assay                                                  | 93 |
| 3.2. Determination of the Equilibrium Time of Testosterone Solubility | 94 |
| 3.3. Effect of Different Excipients on Testosterone Solubility        | 94 |
| 3.4. Estimation of Testosterone Solubility in the Matrix              | 94 |
| 3.5. Preparation of Film-based Testosterone Patches                   | 95 |
| 3.5.1. Adhesive Dispersion Patch Preparation                          | 95 |
| 3.5.2. Estimation of Drug Content                                     | 95 |
| 3.5.3. In-vitro Testosterone Release                                  | 95 |
| 3.5.4. Ex-vivo Testosterone Release                                   | 96 |
| 3.5.5. Effect of Drug Loading                                         | 96 |
| 3.5.6. Effect of Chemical Enhancers                                   | 96 |
| 3.5.6.1. Effect of Surfactants                                        | 96 |
| 3.5.6.2. Effect of Secondary Polymers                                 | 97 |
| 3.5.6.3. Effect of Succinic Acid Cross-linker                         | 97 |
| 3.5.6.4. Effect of Terpene Enhancers                                  | 97 |
| 3.5.7. Effect of Physical Enhancement                                 | 97 |
| 3.5.7.1. Effect of Sonication                                         | 97 |
| 3.5.7.2. Effect of Electric Current                                   | 97 |
| 3.5.8. Effect of Adhesive and Micro-porous Membrane                   | 98 |
| 3.6. Preparation of Gel-based TDDS                                    | 98 |
| 3.6.1. Preparation of the Gel Reservoir                               | 98 |
| 3.6.2. Estimation of Drug Content                                     | 99 |

| 3.6.3. In-vitro Drug Release                           | 99  |
|--------------------------------------------------------|-----|
| 3.6.4. Ex-vivo Drug Release                            | 99  |
| 3.6.5. Effect of Surfactants                           | 99  |
| 3.6.6. Effect of Terpene Enhancers                     | 99  |
| 3.6.7. Effect of Electric Current                      | 99  |
|                                                        |     |
|                                                        |     |
| RESULTS AND DISCUSSION                                 |     |
| 1. Spectrophotometric Assay                            | 100 |
| 2. Solubility Studies                                  | 100 |
| 3. Estimation of Testosterone Solubility in the Matrix | 102 |
| 4. Drug Content of the Prepared TDDS                   | 102 |
| 5. Effect of Drug Loading                              | 102 |
| 6. Effect of Permeation Enhancers                      | 105 |
| 7. Effect of Secondary Polymers                        | 114 |
| 8. Effect of Cross-linker                              | 119 |
| 9. Effect of Terpene Enhancers                         | 122 |
|                                                        |     |

| 10. Effect of Sonication                         | 125 |
|--------------------------------------------------|-----|
| 11. Effect of Electric Current                   | 128 |
| 12. Effect of Adhesive and Micro-porous Membrane | 131 |
| 13. Gel-based TDDS                               | 134 |
| 13.1. Effect of Chemical Enhancers               | 134 |
| 13.2. Effect of Terpenes                         | 137 |
| 13.3. Effect of Electric Current                 | 141 |
|                                                  |     |
| Chapter (II)                                     |     |
| INTRODUCTION                                     | 143 |
| EXPERIMENTAL                                     | 144 |

| 144 |
|-----|
| 144 |
| 144 |
| 144 |
| 145 |
| 145 |
| 145 |
| 145 |
|     |
| 146 |
| 146 |
| 146 |
| 151 |
| 155 |
| 163 |
| 172 |
|     |
|     |
|     |

#### **LIST OF TABLES**

Table (I): Polymers classification according to their mechanical properties ......37

| Table (II): Effect of different plasticizers concentrations on the mechanical properties of                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eudragit E-100 films39                                                                                                                                                 |
| Table (III): Ranking of Film Tack According to Thumb Tack Method44                                                                                                     |
| Table (IV): Effect of DBP plasticizer concentrations on the mechanical properties of Eudragit E-100 films containing succinic or citric acids cross-linkers49          |
| Table (V): Effect of DEP plasticizer concentrations on the mechanical properties of Eudragit E-100 films containing succinic or citric acids cross-linkers58           |
| Table (VI): Effect of triacetin plasticizer concentrations on the mechanical properties of  Eudragit E-100 films containing succinic or citric acids cross-  linkers67 |
| Table (VII): Effect of plasticizers type and concentration on water permeability of Eudragit                                                                           |
| E-100 films at 75 % RH                                                                                                                                                 |
| Table (VIII): Melting enthalpy (ΔH) values for Eudragit E-100 containing different plasticizers83                                                                      |
| Table (IX): Effect of different excipients on testosterone solubility at 25°C101                                                                                       |

| Table (X): Testosterone flux, release rate constant and diffusion coefficient from        |
|-------------------------------------------------------------------------------------------|
| adhesive                                                                                  |
| dispersion- type TDDS containing 1% w/w Span 85 and different testosterone                |
| loads using a synthetic membrane106                                                       |
| Table (XI): Effect of different permeation enhancers on the flux, release rate constant,  |
| diffusion coefficient and permeability coefficient of testosterone from film              |
| type                                                                                      |
| TDDS using a synthetic membrane111                                                        |
|                                                                                           |
| Table (XII): Effect of different permeation enhancers on the flux, release rate constant, |
| diffusion coefficient and permeability coefficient of testosterone from film              |
| type                                                                                      |
| TDDS using synthetic and biological membranes113                                          |
|                                                                                           |
| Table (XIII): Effect of secondary polymer on testosterone flux, release rate constant,    |
| diffusion coefficient and permeability coefficient from film type TDDS                    |
| containing 1% w/w Span 85 using a biological membrane118                                  |
|                                                                                           |
| Table (XIV): Effect of succinic acid cross-linker concentration on testosterone flux,     |
| release                                                                                   |
| rate constant, diffusion coefficient and permeability coefficient from film               |
| type                                                                                      |
| TDDS using synthetic and biological membranes121                                          |

| Table (XV): Effect of terpene enhancers on the flux, release rate constant, diffusion        |
|----------------------------------------------------------------------------------------------|
| coefficient and permeability coefficient of testosterone from film type TDDS                 |
| using a biological membrane126                                                               |
| Table (XVI): Effect of sonication on testosterone release from film type TDDS containing     |
| 1% w/w Span 85 at different temperatures129                                                  |
| Table (XVII): Effect of patch type on testosterone flux and release rate constant from film- |
| based TDDS using a biological membranes                                                      |
| Table (XVIII): Effect of different permeation enhancers on the flux and release rate         |
| constant of testosterone from gel-based TDDS using synthetic and                             |
| biological membranes                                                                         |
| Table (XIX): Effect of terpene enhancers on the flux and release rate constant of            |
| testosterone from gel type TDDS using synthetic and biological                               |
| membranes140                                                                                 |
| Table (XX): Draize scale for assessment of skin irritation147                                |
| Table (XXI): Skin Irritation test for Eudragit E-100 Films in rabbits                        |
| Table (XXII): Skin Irritation test in rats for Eudragit E-100 film type TDDS for 48          |
| hours                                                                                        |

| Table (XXIII): Skin Irritation test in humans after exposure to placebo Eudragit E-100 films  |
|-----------------------------------------------------------------------------------------------|
| with Acronal layer for 24 hours                                                               |
| Table (XXIV): Bioavailability parameters of different film and gel- based TDDS of             |
| testosterone                                                                                  |
|                                                                                               |
|                                                                                               |
|                                                                                               |
| LIST OF FIGURES                                                                               |
| Figure (1): Diagrammatic representation for the skin structure and processes of percutaneous  |
| absorption and transdermal delivery                                                           |
| Figure (2): Components of the epidermis and dermis of human skin                              |
| Figure (3): Brick and mortar design of the stratum corneum4                                   |
| Figure (4): Basic principle of sonophoresis                                                   |
| Figure (5): Basic principle of iontophoresis                                                  |
| Figure (6): Microneedles for transdermal delivery17                                           |
| Figure (7): Microconduit technique for transdermal permeation enhancement19                   |
| Figure (8): Diagrammatic representation for the types of patches for TDDS24                   |
| Figure (9): The tensile strength tester                                                       |
| Figure (10): Eudragit E-100 films                                                             |
| Figure (11): Effect of different concentrations (%w/w) of dibutyl phthalate (DBP) plasticizer |
| on the mechanical properties of Eudragit E-100 films38                                        |
| Figure (12): Effect of different concentrations (%w/w) of diethyl phthalate (DEP) plasticizer |
| on the mechanical properties of Eudragit E-100 films40                                        |
| Figure (13): Effect of different concentrations (%w/w) of triacetin plasticizer on the        |
| mechanical properties of Eudragit E-100 films41                                               |
| Figure (14): Effect of different plasticizers on the percentage elongation at break (□b) of   |
| Eudragit E-100 films                                                                          |
| Figure (15): Effect of different plasticizers on Eudragit film tack                           |