EFFECT OF SALINE WATER ON THE CHEMICAL COMPOSITION OF WHEAT PLANT **GROWN UNDER DESERT SOIL CONDITIONS**

Ву

MOHAMED HUSSEIN ALY AHM由

B.Sc. Agric., (Agric. Biochemistry), Ain Shams University. Agric. (Agric Biochemistry), Ain Shams University.

A thesis submitted in partial fulfillment 62.76

of

the requirement for the degree of

DOCTOR OF PHILOSOP

in

Agriculture

(Agricultural Biochemistry)

Department of Agricultural Biochemistry Faculty of Agriculture Ain Shams University

1997

APPROVAL SHEET

Effect Of Saline Water On The Chemical Composition Of Wheat Plant Grown Under Desert Soil Conditions

By

MOHAMED HUSSEIN ALY AHMED

B.Sc., Agric., (Agric. Biochemistry), Ain Shams University, 1981 M.Sc., Agric., (Agric. Biochemistry), Ain Shams University, 1991

This thesis for Ph.D. degree has been approved by:

Date of examination: 26\11\1997

EFFECT OF SALINE WATER ON THE CHEMICAL COMPOSITION OF WHEAT PLANT GROWN UNDER DESERT SOIL CONDITIONS

By

MOHAMED HUSSEIN ALY AHMED

B.Sc., Agric., (Agric. Biochemistry), Ain Shams University, 1981 M.Sc., Agric., (Agric. Biochemistry), Ain Shams University, 1991

Under the Supervision of:

Prof. Dr. Ahmed Ibrahim Abo Shadi

Prof. of Biochemistry & Vice Dean of Fac. of Agric. Ain Shams University.

Dr. Mohamed Hussein Attia

Assist. Prof. of Biochemistry. Fac. of Agric., Ain Shams University.

Prof. Dr. Mohamed Mohamed Wassif

Prof. of Soils & Head of Soil Conservation Dept. Desert Research Center.

ACKNOWLEDGEMENT

express his sincerest The author wishes to appreciation and deepest gratitude to Prof. Dr. A.I. Shadi Prof. of Biochemistry and Vice Dean Of Fac. of Agric. Ain shams Univ., to Prof. Dr. M.M. Wassif Prof. of Soils and Head of Soil Conservation Dept., Desert Research Center, Mataria, Cairo and to Dr. M.H. Attia Assist. Prof. of Biochemistry, Dept. of Biochemistry, Fac. of Ain shams Univ. for planning, illuminative supervision, sincere guidance and constant support during the course of study. Their continuous encouragement, constructive suggestions, stimulating discussions and valuable comments are much appreciated.

Thanks are also expressed to **Prof. Dr. Nadia El-Aasser** Prof. of Soils Conservation, and the staff members of the Department of Soil Conservation, Desert Research Center for their helping that made this work possible.

ABSTRACT

Mohamed Hussein Aly Ahmed. Effect of saline water on the chemical composition of wheat plant grown under desert soil conditions. Unpublished Ph.D. Thesis, University of Ain Shams, Faculty of Agric., Department of Biochemistry, 1997.

Pot and field experiments were conducted to evaluate the effect of saline water and soil conditioners application on chemical, biochemical components and yield of wheat. The pot experiment results showed that germination percentage and plant height of wheat were significantly decreased with increasing salinity levels from 247 to 7500 mg/L. The total chlorophyll, chl.a, chl.b, and protein contents decreased but carotene content, total carbohydrate, soluble, reducing and non reducing sugars of wheat leaves and shoots increased with increasing salinity levels in irrigation water. Proline content and peroxidase enzyme activity of wheat leaves increased while poly phenol oxidase activity decreased with increasing salinity. Also, the content of P, K, Mn, Zn and Fe of wheat shoots were decreased with increasing salinity levels.

Two field experiments were conducted during season 93/94 and 94/95. The results indicated that the contents of protein, P, K. Mn. Zn and Fe of wheat shoots after 45 and 90 days from sown significantly decreased with increasing salinity levels. P and K contents of wheat grains insignificantly decreased as well. Peroxidase enzyme activity of wheat leaves increased and poly phenol oxidase activity decreased with increasing salinity levels. Concerning the values of proline, total carbohydrate and soluble sugars of wheat shoots, similar trend as that found in pot experiment was obtained. In wheat grains, proline content was decreased while total carbohydrates and soluble sugars content were increased with increasing salinity levels. Grains and straw yields of wheat were significantly decreased with increasing salinity levels in irrigation water. In both seasons, the application of soil conditioners decreased proline content and poly phenol oxidase activity in wheat leaves. The proline of wheat grains was increased. Proteins, total carbohydrates, soluble sugars, P, K, Mn, Zn, and Fe contents in shoots and grains were increased.

Grains and straw yields of wheat were significantly increased with application of soil conditioners especially TR₂ treatment. The interaction effect showed that the values of protein, peroxidase activity, total carbohydrate, soluble sugars and nutrients content of wheat shoots and grains increased but poly phenol oxidase activity and proline decreased with application of soil conditioners at any salinity levels. The above results were reflected on grains and straw yield of wheat, where, the values were increased with the application of soil conditioners at any salinity level in irrigation water. 30m³/fed. of town refuse was the best at any level of salinity in both seasons.

Concerning soil chemical properties the values of soil salinity, total nitrogen, available phosphorus and soluble soil potassium increased either with increasing salinity levels or soil conditioners application for both growing seasons. Soil organic matter percentage decreased with increasing salinity levels, but the values increased with the application of both soil conditioner types. In conclusion, the beneficial effect of soil conditioners was observed at any level of salinity in irrigation water.

<u>Key words</u>; saline water, soil conditioners, wheat plant, grains, protein, proline, peroxidase activity, poly phenol oxidase, total carbohydrates, soluble sugars, P, K, Mn, Zn, Fe and soil chemical properties.

CONTENTS

		Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
	2.1. Saline irrigation water and plant growth	3
	2.1.1. Germination	3
	2.1.2. Plant height	3
	2.1.3. Dry matter and yield	4
	2.2. Saline irrigation water and biochemical constituents	
	of plant	5
	2.2.1. Chlorophyll content	5
	2.2.2. Crude protein and nitrogen contents	7
	2.2.3. Proline content	8
	2.2.4. Oxidative enzymes	10
	2.2.5. Carbohydrate content	11
	2.3. Saline irrigation water and nutrients content of plant	s 13
	2.3.1. Macronutrients	13
	2.3.2. Micronutrients	15
	2.4. Organic manure as soil conditioners for controlling salinity hazards	16
	2.4.1. Effect of organic manure types on crop yield	16
	2.4.2. Effect of organic manure types on nutrients	
	2.4.2.1. Macronutrients	18
	2.4.2.2. Micronutrients	19
	2.4.3. Effect of organic manure types on some bio-	
	chemical composition of plants	. 20
	2.5. Effect of saline irrigation water on soil chemical properties	2.1

CONTENTS (Cont.)

Ţ	Page
2.5.2. Organic matter content and macronutrients availability	21
2.6. Effect of organic manure types on soil chemical properties	23 23
2.6.2. Organic matter content and macronutrients availability	. 23
3. MATERIALS AND METHODS	25
3.1. Pot experiment	. 25
3.2. The field experiments 3.2.1. Plant sampling 3.2.2. Soil sampling	. 27
3.3. Methods of analysis 3.3.1. Plant analysis 3.3.2. Soil analysis	29
4. RESULTS AND DISCUSSION	33
4.1. Soil properties	33
4.2. Characteristics of under ground water used in the experiments	33
4.3. Pot experiment	age
of wheat grains	36
wheat leaves	

CONTENTS (Cont.)

	Page
4.3.4. Effect of salinity levels on protein content of	42
wheat shoots	. 42
leaves	44
4.3.6. Effect of salinity levels on oxidative enzymes of	
wheat leaves	
4.3.7. Effect of salinity levels on carbohydrate content	
of wheat shoots	48
4.3.7.1. Total carbohydrate	
4.3.7.2. Soluble, reducing and non reducing	
sugars	51
4.3.8. Effect of salinity levels on macronutrients	
content of wheat shoots	
4.3.9. Effect of salinity levels on micronutrients conter	
of wheat shoots	52
4.4. Field experiment	57
4.4.1. Effect of salinity levels and soil conditioners on	,
protein content of wheat shoots and grains	57
4.4.2. Effect of salinity levels and soil conditioners on	,
proline content of wheat leaves and grains	. 66
4.4.3. Effect of salinity levels and soil conditioners on	
oxidative enzymes activity	74
4.4.3.1. Peroxidase enzyme activity	74
4.4.3.2. Poly phenol oxidase enzyme activity	80
4.4.4. Effect of salinity levels and soil conditioners on	
carbohydrate content of wheat shoots and grains	
4.4.4.1. Total carbohydrate	85
4.4.4.2. Soluble, reducing and non-reducing	
sugars	. 93
4.4.5. Effect of salinity levels and soil conditioners on	
macronutrients content of wheat shoots and	
grains	108

CONTENTS

F	Page
4.4.5.1. Phosphorus content	108
4.4.5.2. Potassium content	116
4.4.6. Effect of salinity levels and soil conditioners on	
	124
4.4.7. Effect of salinity levels and soil conditioners on	
S. w.n. w y y w	138
4.4.8. Effect of salinity levels and soil conditioners on	
soil chemical properties	144
4.4.8.1. Soil salinity	144
4.4.8.2. Soil organic matter content	148
4.4.8.3. Total nitrogen	151
4.4.8.4. Available soil phosphorus content	155
4.4.8.5. Soluble soil potassium	159
5. SUMMARY	163
6. CONCLUSIONS	170
7. REFERENCES	173
ARABIC SUMMARY.	