EFFECT OF RADIATION ON SOME PREPARED POLYMERIC MOULDS FOR USE IN ENVIRONMENTAL APPLICATIONS

Thesis
Submitted to
Environmental Studies and Researches Institute
Ain Shams University

For

M. Sc. Degree of Environmental Sciences Department of Biological and Physical Sciences

574,1915

 $\mathbf{B}\mathbf{y}$

1,236°

Hussein Hussein El-Nahas

(B.Sc.)

National Center for Radiation Research & Technology Atomic Energy Authority

A.R. of Egypt

TO MY PARENTS

ACKNOWLEDGEMENT

The author is greatly indebted to Professor Dr.M.S. Abdel-Mottaleb, Professor of Inorganic Chemistry, Faculty of Science- Ain Shams University, to Professor Dr. A.M. Dessouki, Head of Radiation Chemistry of Polymers Department, National Centre for Radiation Research and Technology (NCRRT) and to Assist. Professor Dr. N. Hafez, Radiation Chemistry of Polymers Department (NCRRT), for suggesting the point of research, supervision, continuous guidance and valuable discussions throughout this work. My best thanks to prof. Dr. A. El - Behay, president of NCRRT for facilities offored, care and interest.

Many sincere thanks to Professor Dr. Adel Yassin, Dean of Institute of Environmental Studies and Researches- Ain Shams University and Professor Dr. Abdalla Ibrahim, Head of Department of Biological and Physical Sciences for their help and interest. Also, my best thanks to all my colleagues in the department and the centre.

EFFECT OF RADIATION ON SOME PREPARED POLYMERIC MOULDS FOR USE IN ENVIRONMENTAL APPLICATIONS.

Thesis Advisors:

Approved

Prof. Dr. M.S. Abdel Mottaleb.

Assist. Prof. Dr. N. Hafez.

Prof.Dr. Abdalla Ibrahim.

Head of Department of Biological and Physical Sciences.

CONTENTS

AIM OF WORK

CHAPTER I

INTRODUCTION	1
Interaction of high energy radiation with matter	1
Interaction of high energy radiation with polymer	2
Physical effects of radiation	7
Definitions and processing of rubber moulds	14
CHAPTER II	
LITERATURE REVIEW	22
Latex mould and foam rubber	22
Rubber material for structural construction	28
Rubber-Cement composition	31
Preparation and properties of modified rubber	43
Environmental effect on the properties of natural rubber	
composition	45
Studies on the preparation and uses of Co-60 gamma-ray	
irradiated natural latex	47
CHAPTER III	
EXPERIMENTAL	51
Materials	51
Experimental techniques	52

CONTENTS

Page

CHAPTER IV

RESULTS AND DISCUSSION	60
Preparation of rubber-cement mould	60
Mixing and moulding process.	61
Specifications recorded according to the typical formulation	62
Factors affecting the preparation of rubber-cement mould.	63
Effect of hydroxy ethyl cellulose (HEC) stabilizer	63
Effect of delayed- action coacervant	66
Effect of natural rubber latex (NRL).	70
Effect of cement	70
Effect of water	73
Physical properties of rubber-cement mould	75
Shrinkage	75
Water uptake	85
Mechanical properties	94
Effect of Gamma radiation on the mechanical properties	109
Effect of aging on nonirradiated and irradiated rubber-	
cement mould	114
Technical applications of rubber-cement mould	122
SUMMARY	124
REFERENCES	127
ARABIC SUMMARY	12/

TABLES AND FIGURES LIST

Tables:		Page
Table (1) :	Classification of viscosity modifier and protective	J
	colloids	18
Table (2):	of the prepared modifies	61
Table (3) :	The specifications recorded to the typical	
	formulation.	62
Figures:		
Fig. (1):	Structure of cellulose, idealized structure of hydroxy	
F: - (7)	etnyl cellulose (HEC).	19
Fig. (2):	Vicat apparatus for determining the setting time of cement.	
Fig. (3):	A Schematic diagram (Gamma cell. Cross section of	54
	the Co ⁶⁰ -cell used for the irradiation of samples.	
Fig.(4):	Effect of hydroxy ethyl cellulose (HEC) stabilizer	59
	concentration on initial setting time of rubber-cement	
	mould.	65
Fig.(5):	Effect of delayed - action coacervant (sodium meta	03
	sincate) concentration on initial setting time of	
D: (6)	rubber-cement mould.	68
Fig.(6):	Effect of natural rubber latex (NRL) concentration	00
E;~ (7).	on initial setting time of rubber-cement mould	71
Fig.(7):	Effect of cement concentration on initial setting time	
Fig.(8):	of rubber-cement mould.	72
· · · · · · · · · · · · · · · · · · ·	Effect of water content on initial setting time of rubber-cement mould.	
Fig.(9):	Fice	74
	effect of various concentrations of hydroxy ethyl cellulose (HEC) on shrinkage percentage of rubber-	
	cement mould as a function of time.	
Fig.(10):	Effect of various concentrations of delayed-action	77
	coacervant (sodium meta silicate)on shrinkage	
	percentage of rubber-cement mould as a function of	
	time.	78
		70

Fig.(11):	Effect of various concentrations of natural rubber latex (NRL) on shrinkage percentage of rubber-	
Fig.(12):	cement mould as a function of time. Effect of various concentrations of cement at	81
	different concentrations on shrinkage percentage of rubber-cement mould as a function of time.	82
Fig.(13):	Effect of various concentrations of CaCO3 filler on shrinkage pecentage of rubber-cement mould as a	
Fig. (14):	function of time. Effect of water content on shrinkage percentage of	83
Fig. (15):	Effect of hydroxy ethyl cellulose (HEC)concentration	84
Fig. (16):	on water uptake of rubber-cement mould. Effect of delayed- action coacervant (sodium meta-	86
	cement mould.	87
Fig. (17):	Effect of natural rubber latex (NRL) concentration on water uptake of rubber-cement mould.	
Fig.(18):	Effect of cement concentration on water uptake of	89
Fig.(19):	Effect of CaC03 filler concentration on water uptake	90
Fig. (20):	of rubber-cement mould. Effect of water content on water uptake of rubber-	91
Fig.(21):	cement mould.	93
Fig. (22):	Effect of natural rubber latex (NRL) concentration on tensile strength of rubber - cement mould.	95
	Effect of natural rubber latex (NRL) concentration on elongation at break of rubber-cement mould.	96
Fig. (23):	compression percentage of initial thickness of	70
Fig. (24):	Effect of cement concentration on tensile strength of	97
Fig. (25):	rubber-cement mould. Effect of cement concentration on elongation at break	99
Fig. (26):	Effect of coment consent it	100
S ().	percentage of initial thickness of rubber- cement	
	mould.	101

Fig.(27):	Effect of CaCO3filler concentration on tensile	
	strength of rubber-cement mould.	102
Fig (28):	Effect of CaCO ₃ filler concentration on elongation at	202
771 (5.5)	break of rubber-cement mould.	103
Fig. (29):	Effect of CaCO ₃ filler concentration on compression	
	percentage of initial thickness of rubber-cement	
T: ~ (20)	mould.	104
Fig.(30):	Effect of water content on tensile strength of rubber-	
Fig. (21).	cement mould.	106
Fig.(31):	Effect of water content on elongation at break of	
Fig.(32):	rubber-cement mould.	107
116.(52).	Effect of water content on compression pecentage of	
Fig.(33):	initial thickness of rubber-cement mould.	108
6.(00).	Effect of irradiation dose on tensile strength of rubber - cement mould.	
Fig (34):	Effect of irradiation dose on elongation at break of	111
	rubber-cement mould.	
Fig. (35):	Effect of irradiation dose on compression percentage	112
- ', '	of initial thickness of rubber - cement mould.	110
Fig.(36):	Effect of aging on tensile strength at different	113
	environmental conditions(non-irradiated samples)	116
Fig.(37):	Effect of aging on tensile strength at different environ	116
Dt. (5.5)	mental conditions (irradiated samples at 25 kGy)	117
Fig.(38):	Effect of aging on elongation at break at different	11/
E: (20)	environmental conditions (non-irradiated samples)	118
Fig.(39):	Effect of aging on elongation at break at different	110
	environmental conditions (irradiated samples at 25	
Ei. (40)	KGy).	119
Fig.(40):	Effect of aging on compression set at different	
Fig.(41):	environmental conditions (non-irradiated samples)	120
* 15.(71).	Effect of aging on compression set at different	
	environmental conditions (irradiated samples at 25 kGy).	
	NOy).	121

NOMENCLATURE

NRL = Natural Rubber Latex.

KGy = Kilo-gray.

Mrad. = Mega rad. = 10 KGy

phr = Part per hundred parts rubber

 T_b = Tensile strength at break.

E_b = Percentage elongation at break

Vegomet = Anhydrous Sodium meta Silicate

Cellosize = Hydroxy Ethyl Cellulose (HEC)

O.P.C. = Ordinary PortlandCement

Aim of Work

A multitude of industrial applications of polymeric moulds which have been proposed and exploited was reported in many books and articles. For example, in sandy soil stabilization by spraying such a rubberized mould using a delayed- action mechanism, a fine network of plasticised rubber is produced which binds the surface particles together. Erosion by wind and rain is thereby retarded, and vegetation was able to grow, which itself has a further binding and stabilizing effect upon the soil particles. Furthermore, use of the spray on sandy slopes is said to prevent the rain from draining through the sand; it can therefore be diverted in such a way as to render the valleys fertile.

An important application of rubberized moulds is the ability of these compositions to take up small relative movements which can be used in constructing materials as in expansion joints, crack's filling materials and soil injection...etc. A further application in waste disposal, where the important advantage offered by rubber-cement composition moulds which can be resistant to cracks, corrosion, humidity and land trembling.

The aim of this work is to prepare some polymeric moulds using Natural Rubber Latex (NRL). Cement composites based on a delayed - action mechanism. Factors affecting the preparation process such as concentration, mixing percentage, additives and their effects on what is regarded as a delayed-action coacervant combination will be studied.

The effect of γ - radiation on some properties of the prepared materials such as the mechanical properties will be studied. A study of the effect of natural aging of the prepared moulds before and after irradiation at different environmental conditions as well as the possibility of their application in the construction field as expansion joints and cracks filling materials will be also investigated.

CHAPTER I

INTRODUCTION

Introduction

Interaction of high energy radiation with matter

The primary effect of the interaction of gamma - rays with matter includes the production of high energy, and hence high speed electrons by the photoelectric, compton, or pair-production processes. These electrons are the main agent through which all the effects of gamma rays arise. The high speed electrons will continuously be subjected to repulsion which deflects it from its original path and also slows it down. Its path is, therefore tortuous and quickly loses all its energy. Thereafter it is captured by one of the many atoms, which have been ionized by radiation under other circumstances, there will be interaction between the high speed electron and one of the individual electrons of the atom. This may involve the transfer of enough energy to an orbital electron to "raise it" from its normal orbit to one of slightly higher Excited atoms are produced which are very reactive. These energy. usually have sufficient extra energy to break excited atoms spontaneously into radicals. Another alternative is that the high speed electron may repel an individual electron to eject it completely from its parent atom.

Ionization is therefore a consequence of the passage of electrons through the matter. Therefore a chemical change may be expected, since the electron ejected may have been responsible for a chemical bond in a compound. Estimates for the time of this electron capture process vary but appear to be too short in most situations for ionic chemical reactions to take place as judged by the experimental evidence(1). It can be seen from the above that typical active