STUDIES ON CELL AND TISSUE CULTURE TECHNIQUE

TO PRODUCE FLAVOURING AGENTS

Thesis

Submitted in Fulfilment of the

Requirements for the Degree

of Doctor of Philosophy

641. H

Ву

Elham Hussein Maamoon

B.Sc. 1971 (Nutrition & Food Chemistry)

M.Sc. 1982 (Nutrition & Food Chemistry)

Women's College
Ain-Shams University
Dept. of Biochemistry and Nutrition
1991

وَعَلَّمَكُ مَالَمُ تَكُن تَعُلَمُ

وَكَانَ فَضَلُ اللَّهِ عَلَيْكَ عَظِيمًا

مَبِدُ وَاللَّهُ الْعَظيمِ

سورة النساء آبية ١١٢

Approval Sheet

Name : Elham Hussein Maamoon.

Title: Studies on cell and tissue culture technique to

produce flavouring agents.

Thesis approved by:

D.M. Bharara Mostofa A. Nefal

Date: / / 1991

STUDIES ON CELL AND TISSUE CULTURE TECHNIQUE TO PRODUCE PLAVORING AGENTS

Prof. Dr. Saad K. Shehab:

Prof. of Biochemistry,

Dept. of Biochemistry and Nutrition,

Women's College, Ain Shams Univ.

Prof. Dr. Mostafa A. Nofal:

Prof. of Food Science and Technology,

Dept. of Food Sci. and Techno.,

Faculty of Agriculture,

Al Azhar Univ.

Dr. Mohammad H. Edriss:

Assoc. Prof. of Horticulture,

Dept. of Hort.,

Faculty of Agriculture,

Al-Azhar Univ.

A. H. Edriss

Head Of Department

CONTENTS

		<u>Page</u>
1-	Introduction	1
2-	Aim of the Work	3
3-	Review of Literature:	
	A. Cell and plant-tissue culture biotechnology	7- 4
	B. Physical and chemical studies	26
4-	Materials and Methods:	1
	I. Tissue culture studies	41
	II. Analytical studies	49
	III. Statistical analysis	52
5-	Results and Discussion:	
	(A) Evaluation of growth and morphogenetic	
	responses of different explant sources	53
	- First experiment: Effect of different	
	vitamins balances	· - 53 1
	- Second experiment: Effect of different	
	levels of growth regulators	65
	- Third experiment: Effect of different	
	levels of sucrose	86
	- Subculturing	- - 95
	(B) Evaluation of the formed ingredients in	
	extracts of callus and media of geranium	
	and peppermint	97

			Page
		I- Geranium extracts	97
		II- Peppermint extracts	104
	(C)	Determination of oil content in the	
		different leaves of geranium and pepper-	
		mint	111
		I- Qualitative analysis	114
		II- Quantitative analysis	124
6-	Summ	ary	128
7-	Refe	rences	138
0_	31	oia Cumpany	

LIST OF FIGURES

			Page
Fig.	(1):	Geranium callus formed from excised leaf	56
Fig.	(2):	Geranium callus differentiated to root	
		hairs	57
Fig.	(3):	Geranium callus differentiated to shoot	58
Fig.	(4):	Peppermint shoot tip forming callus,	
		differentiated to shoot and roots	62
Fig.	(5):	Peppermint callus formed from leaf	
		sections	63
Fig.	(6):	Callus weight from geranium and peppermint	
		leaves explants grown in vitro as affected	
		by different doses of vitamins	64
Fig.	(7):	Geranium shoot tip differentiated to shoot	
	•	and roots	72
Fig.	(8):	Geranium shoot tips differentiated to	
		weak shoot, large roots and small callus	72
Pig.	(9):	Differentiated geranium leaf sections	73
Fig.	(10):	Influence of different growth regulators	
		treatments on callus weight from geranium	
		and peppermint leaves explants grown in	
		vitro	74

			Page
Fig.	(11):	Callus differentiated to shoot resulting from culturing peppermint leaf sections	
		on treatment (12)	79
Fig.	(12):	Influence of different concentrations of	
		sucrose on callus weight of geranium	
		and peppermint leaves explants grown	
	1	<u>in vitro</u>	89
Fig.	(13):	Subculture of geranium callus, forming	
		shoot	96
Fig.	(14):	Gas chromatogram of Egyptian geranium	
		oil	99
Fig.		Gas chromatograms of geranium callus	
		extracts:	
		(A) Extract with solvents	
		(B) Extract of distillate, with solvents	100
Fig.	(16):	Gas chromatogram of Egyptian peppermint	
		oil	107
Pig.	(17):	Gas chromatogram of peppermint growing	
		medium, extracted with solvents	108
Fig.	(18):	Gas chromatogram of peppermint callus	
	•	ontone at all and a little and a	

			<u>Page</u>
Fig.	(19):	Effect of leaf placement on oil content	
		of geranium and peppermint	113
Fig.	(20):	Effect of leaf placement on some	
		components of geranium oils	113
Fig.	(21):	Gas chroamtogram of the first leaves	
		oil of Egyptian geranium	115
Pig.	(22):	Gas chromatogram of the second leaves	
		oil of Egyptian geranium	116
Fig.	(23):	Gas chromatogram of the third leaves	
		oil of Egyptian geranium	117
Fig.	(24):	Gas chromatogram of the first leaves	
		oil of Egyptian peppermint	121
Fig.	(25):	Gas chromatogram of the second leaves	
		oil of Egyptian penpermint	122

LIST OF TABLES

			<u>Page</u>
Table	(1):	Influence of different balances of	
		vitamins on callus weight, formation	
		ratio, differentiation and morpho-	
		genetic properties of geranium	
		leaves explants grown in vitro	55
Table	(2):	Influence of different balances of	
		vitamins on callus weight, formation	
		ratio, differentiation and morpho-	
		genetic properties of peppermint leaves	
		explants grown in vitro	60
Table	(3):	Influence of different balances of	
		vitamins on callus weight, formation	
		ratio, differentiation and morpho-	
		genetic properties of peppermint tips	
		grown <u>in vitro</u>	61
Table	(4):	Influence of different levels of growth	
		regulators on callus formation ratio,	
		weight and differentiation of geranium	
		leaves explants grown in vitro	67
Table	(5):	Influence of different levels of growth	
		regulators on callus formation ratio,	
	٠	weight and differentiation of pepper-	
		mint leaves explants grown in vitro	77

			<u>Page</u>
Table	(6):	Influence of different balances of	
		growth regulators on callus formation	
		ratio, weight and differentiation of	
		peppermint tips grown in vitro	82
Table	(7):	Influence of different levels of sucrose	
		on callus formation ratio, and	
		differentiation of geranium leaves	
	•	explants grown in vitro	87
Table	(8):	Influence of different levels of	
		sucrose on callus formation ratio, and	
		differentiation of peppermint leaves	
		explants grown in vitro	88
Table	(9):	Influence of different levels of sucrose	
		on callus formation ratio and	
		differentiation of peppermint shoot tips	
		explants grown in vitro	92
Table	(10):	Comparison between influences of all	
		treatments on callus formation by	
		geranium and peppermint leaves explants	
		grown in vitro	93
Table	(11):	GLC analysis of geranium oil and	
		extracts of callus	101

			<u>Page</u>	
Table	(12):	GLC analysis of peppermint oil, and		
		extracts of callus and medium	110	
Table	(13):	Oil percent in geranium and peppermint		
		leaves	111	
Table	(14):	GLC analysis of geranium oils produced		
		from different leaves	118	
Table	(15):	GLC analysis of peppermint oils produced		,
		from different leaves	123	,

ACKNOWLEDGEMENT

The author wishes to express her deepest faithful gratitude to Prof. Dr. Saad K. Shehab, Professor of Biochemistry, Dept. of Biochemistry and Nutrition, Women's College, Ain Shams University for his supervision and valuable guidance through this work.

I would like to dedicate my sincere appreciation to Prof. Dr. Mostafa A. Nofal, Professor of Food Science and Technology, Dept. of Food Sci. and Technol., Faculty of Agriculture, Al Azhar University, for his supervision guidance and helpful suggestions throughout this investigation.

I would thank Dr. Mohammed H. Edriss, Associate Professor of Horticulture, Dept. of Hort., Faculty of Agriculture, Al Azhar University for his continuous helps throughout the work.

My deepest appreciations to Prof. Dr. Ahmed E. Othman, Chief of Research Department at Food Flavours and Essenses Factories of the Egyptian Sugar and Distillation Company for his unfailing encouragement and the facilities at his disposal.

Sincere indebtedness is also to the Egyptian Sugar

and Distillation Company who gave me the opportunity to complete such work.

My heartful thanks to all the members of Research Dept. at Food Flavours and Essences Factories of the EgyptianSugar and Distillation Company for their continuous help throughout the work.

Thanks are due to my parents and my husband for their encouragement and patience.