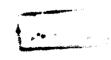
COMPARATIVE STUDIES ON THE EFFECT OF INSECT-PARASITIC NEMATODES AND THEIR RELATIONS TO INSECT HOST

BY

NADIA MAHMOUD MOHAMMAD NASR B.sc. (Chemistry & Zoology), Ain Shams University

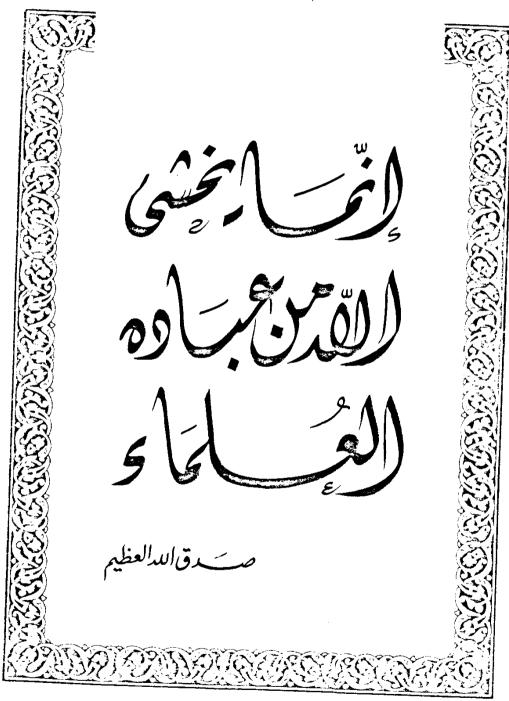
A THESIS

Submitted in Partial Fulfilment of The Requirements for The Degree of


MASTER OF SCIENCE

In

ZOOLOGY


595.182 N

DEPARTMENT OF ZOOLOGY UNIVERSITY COLLEGE FOR GIRLS AIN SHAMS UNIVERSITY

1991

ب الدالرة الرحم

COMPARATIVE STUDIES ON THE EFFECT OF INSECT-PARASITIC NEMATODES AND THEIR RELATIONS TO INSECT HOST

Supervisors

Approved

Professor Dr. Erian George Kamel Professor of Zoology, University College for Girls, Ain Shams University, Cairo, Egypt.

Dr. Saadia El Metwally Ghally
Ass. Professor of Zoology,
University College for Girls,
Ain Shams University,
Cairo, Egypt.

Head of Zoology Department Prof. Dr. Madiha A. Ashry

COMPARATIVE STUDIES ON THE EFFECT OF INSECT-PARASITIC NEMATODES AND THEIR RELATIONS TO INSECT HOST

COURSES

Studied by the candidate in partial fulfilment of the requirements for the

Degree of M.Sc.

- 1. Physiology
- 2. Histology and Experimental Histology
- 3. German Language

M. Ashe

ACKNOWLEDGEMENT

The author wishes to express her sincere gratitude to Professor Erian George Kamel, Professor of Zoology at University College for Girls, Ain shams University, for supervising the work, valuable guidance, encouragement, constructive criticism and unfailing help throughout the course of these studies. He gave me so much of his precious time for the finishing the present thesis.

Deep gratitude is also due to Dr. Saadia El Metwally Ghally Assistant Professor of Zoology at University College for Girls, Ain shams University, for her active supervision, valuable advices, constructive criticism and encouragement during the work and for all preparation of the manuscript.

I am also grateful to Dr. Abdel Ghany, M. Abdel Kawy, Entomological Research Institute, Ministry of Agriculture, Dokki, for all his kind help, during the course of the present study.

Thanks are also due to the staff members of entomology Departmentment, Faculty of Sciences, Ain Shams Univeristy, for all facilities they made available.

I would like to acknowledge with heartiest and deep gratitude my mother, my sisters specially Samia for giving me the inspiration, confidence, love and patience.

CONTENTS

		Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	4
з.	MATERIALS AND METHODS	77
4.	RESULTS	85
	I- Susceptibility of Different Stages of Insect	
	Host to Parasitic Nematode	85
	1. The influence of \underline{S} . $\underline{feltiae}$ on the morta-	
	lity of <u>S. littoralis</u> caterpillars	85
	2. The influence of \underline{S} . $\underline{feltiae}$ nematodes on	
	the mortality of \underline{M} . domestica larvae	86
	3. The influence of \underline{S} . $\underline{feltiae}$ on the morta-	
	lity of <u>S. littoralis</u> pupae	87
	4. the influence of S . feltiae on the morta-	
	lity of M. domestica pupae	87
	5. The influence of S . feltiae on the morta-	
	lity of <u>S. littoralis</u> imagos	88
	6. The influence of <u>S.</u> feltiae on the morta-	
	lity of M. domestica imagos	88
	II- Infestation Intensity	89
	III- Development of Nematodes	91
	a- The occurence dates and numbers of diffe-	
	rent development stages	92
	b- The changes in numbers of adult forms	95
	IV- Production of Invasive Larvae of Steinernema	
	feltiae	97

CONTENTS (Cont.)

	Page
V- The Influence of infection with	
Steinernema feltiae Filipjev on The	
Haemocyte Picture of The Cotton Leaf Worm	
Spodoptera littoralis (Boisduval)	100
i- Effect of nematodes on total haemocyte	100
	100
count (THC) of <u>S. littoralis</u>	100
haemocyte counts (DHC) of the host	102
VI- Histopathological Effects of Parasitic	
Nematodes <u>S. feltiae</u> Filipjev on Cotton	
Leafworm <u>S. littoralis</u> Boisduval and	
House Fly M. domestica Linnaeus	103
1. The histopathological effects of S .	
feltiae Filipjev on the larval tissues	
of <u>S. littoralis</u>	103
1.1. Dosage 50 of nematodes per larva	104
1.2. Dosage 100 of nematodes per larva	105
1.3. Dosage 200 of nematodes per larva	105
1.4. Dosage 500 of nematodes per larva	106
1.5. Dosage 1000 of nematodes per larva	106
2. The histopathological effects of S .	
feltiae Filipjev larvae on the larval	
tissues of <u>M. domestica</u> Linnaeus	107
2.1. Dosage 50 of nematodes per larva	108
2.2. Dosage 100 of nematodes per larva	108
2.3. Dosage 200 of nematodes per larva	108
2.4. Dosage 500 of nematodes per larva	108
2.5. Dosage 1000 of nematodes per larva	109

CONTENTS (Cont.)

		Page
5.	DISCUSSION	110
6.	SUMMARY	127
7.	BIBLIOGRAPHY	132
	APARIC SUMMARY.	

* * *

INTRODUCTION

1. INTRODUCTION

The environment is polluted by different kinds οf insecticides which are considered as serious pollutants with deleterious effects on the human and other animals specially the economic animals due to the increase in their production and use with a large amounts without any control in recent years. The increasing cost of insecticides as well as their adverse side effects both on environment and living beneficial organisms as well as acute and chronic toxicity to man and animal and the disturbance of natural balance between pests and their natural enemies and the rapid development of insecticide resistance, increased the need for an alternative method for insect control. Therefore, it is necessary to avoid the potential environmental hazards of conventional insecticides. accordingly, the reach for an alternative biological control agent becomes unevitable requirement.

Consequently, biological control is recomended to avoid the disasterous effects occurring by the use of chemical insecticides.

Some biological control agents with potential for insect pest control in Egypt include the nematodes Steinernema feltiae Filipjev (= Neoaplectana carpocapsae Weiser, and Heterorhabditis heliothidis, polyhedrosis virus, the bacterium Bacillus thuringiensis, Xenorhabdus nematophilas (= Achromobacter nematophilus) and many others.

Nematodes are used as biological control in many countries because of its merits, no toxicity to mammals and high selectivety to target organisms.

The relation between insects and nematodes is still of utmost interest to biologists, not only from the biological control view point but also for some haemolymph and histological studies.

Many species of nematodes parasitizing insects were surveyed during the last few decades. Members of the genus <u>Steinernema</u> were studied and proved to have a wide host range and relatively quick establishment in the insect host.

This non-specificity is attributed to accompaniment of the bacteria which relase in the haemocoel of the insect, after the penetration of the nematode, causing septicemia to the insect.

The present study was suggested to make comparative studies on the effect of insect-parasitic nematodes and their relations to two harmful insects from two orders, Lepidoptera and Diptera.

The first is the cotton leafworm <u>Spodoptera littoralis</u> as an example of Lepidoptera and it's considered as one of the most serious pests not only in Egypt but also all-over the world, it causes severe crop damage,

and it is an important agricultural insect.

The second pest is the house fly <u>Musca domestica</u> as an example of Diptera and it is an important medical insect. The house flies create an uncomfortable environment for man as well as transefering some diseases.

- * The aim of the present work is to investigate the following points:-
- (1) The susceptibility of different stages of insecthosts to parasitic nematode.
- (2) The infestation intensity of insect hosts by nematodes.
- (3) Development of nematodes within the insect hosts.
- (4) Production of invasive larvae of <u>Steinernema</u> feltiae nematodes in the insect hosts.
- (5) Defensive reactions of insects.
- (6) Histopathological effects of parasitic nematodes Steinernema feltiae Filipjev on the insect hosts such as the effect of nematode inoculation on fat bodies, gut, muscles and cuticle of the last instar larvae of <u>S.littoralis</u> (Boisduval) and <u>M.domestica</u> Linnaeus.

2 - REVIEW OF LITERATURE SUSCEPTIBILITY OF DIFFERENT STAGES OF INSECT HOSTS TO PARASITIC NEMATODES

Extensive research studies have been conducted throughout the last few decades on the entomophilic steinernematid nematodes in biological control of pests and have proven relatively quick establishment in a wide host range. Therefore it has been considered as one of the most effective biocontrol agents used lately. In the following literature review, I would like to throw some light on the effect of the entomogenous nematode <u>Steinernema</u> <u>feltiae</u> (= plectana carpocapsae), its associated bacterium <u>Xenorhabdus</u> <u>nematophilus</u> Synonomy (= <u>Achromobacter</u> nematophilus) and some another organisms used as biological control agents, on their insect host especially from point of view; susceptibility of various insects to nematode infection, it should be emphasized that the literature is full of research works on the relationships between the nematode N. carpocapsae and various insect pests belonging to different orders. Lists of insects parasitized by nematodes were recorded, as early as, 1900 (Schultz, 1900), Hall (1929) and Neveu-Lemaire (1936). following review will be concerned mainly with \underline{N} . carpocapsae and other organisms as a general parasite to insects.