## STUDIES ON SOME PROPERTIES OF BUFFALOE'S

MILK PROTEINS

Ву

AHMED ISMAIL METWALLY AHMED

A thesis submitted in partial fulfilement

of

the requirements for the degree of

#### DOCTOR OF PHILOSOPHY

637 ...6

in

Agricultural Science
(Dairy Science & Technology)

...........

Food Science Department
Faculty of Agriculture
Ain Shams University

1992

#### Approval Sheet

# STUDIES ON SOME PROPERTIES OF BUFFALOE'S MILK PROTEINS

Ву

### AHMED ISMAIL METWALLY AHMED

B.Sc. (Dairy Science & Technology), Ain Shams Univ., 1980

M.Sc. (Dairy Science & Technology), Ain Shams Univ., 1986

This thesis for Ph.D. degree has been approved by:

Prof. Dr. M. M. I. EL-ABD

Prof. of Dairy Science and Technology, Fac. of Agric. Cairo University. M.M.ELART

Prof. Dr. S.A.EL SHABRAWY

Prof. of Dairy Science and Technology, Fac. of Agric. Ain Shams University. S.A-EL-Shabrawy

Prof. Dr. G. A. MAHRAN

Prof. of Dairy Science and Technology, Fac. of Agric. Ain Shams University, and Head of Department. (Supervisor) Mahran

Date of examination 16/6/1992.



## STUDIES ON SOME PROPERTIES OF BUFFALOE'S MILK PROTEINS

BY

#### AHMED ISMAIL METWALLY AHMED

B.Sc. (Dairy Science & Technology),Ain Shams Univ., 1980M.Sc. (Dairy Science & Technology),Ain Shams Univ., 1986

Under the Supervison of: Prof. Dr. G. A. MAHRAN
Prof. of Dairy Science & Technology and head of Dep.of Food Sci.
Fac.of Agric. Ain Shams Univ.
Prof. Dr. LAILA, B. ABD EL HAMID
Prof.of Dairy Science & Technology
Fac.of Agric., Ain Shams Univ.
Dr. H.F. HAGGAG
Assoc. Prof., Dairy Science &
Technology, Fac. of Agric., Ain

Shams University.

#### ABSTRACT

Milk proteins are commercially prepared for using in formulated food products as nutrients as well as functio-This study was devoted to investigate the nal ingredients. composition and function properties (Solubllity, emulsifying properties, water and oil absorption, foaming property and buffer intensity ) of buffaloe's and cow's milk protein preparations (Total milk proteinates, casein co-precipitate, HCl-casein, lactic casein and rennet-casein). Buffaloe's total milk proteinates showed the best solubility and emulsifying properties against the other protein preparations whereas, buffaloe's rennet casein showed the least value of solubility and emulsifying properties. Both buffaloe's total milk proteinates and casein co-precipitate possessed higher water absorption capacity but they gave a low value regarding oil absorption capacity. HCl-casein

and rennet casein gave high value for oil absorption capacity in comparison with other groups of protein. The water oil absorption index was the best for buffaloe's total milk proteinates and casein co-precipitate, while was the least for buffaloe's rennet casein. Buffaloe's total milk proteinates gave the lowest value for foam expansion than the other protein preparations. In buffaloe's milk protein preparations the wet and lyophilized samples gave better function properties than oven dried samples. Solubility emulsifying, and foaming properties of buffaloe's milk protein preparations were pH dependent. Buffaloe's milk protein preparations gave maximum buffer intensity at the range Buffaloe's and cow's milk protein preparof pH 5.2-6.6. ations showed similar trend in emulsifying, foaming and buffer intensity properties but gave different behaviour in solubility properties and water and oil absorption. Buffaloe's and cow's total milk proteinates showed high value of protein content and less value of ash content in comparison with buffaloe's and cow's rennet casein which showed high value of ash content against other protein preparations.

#### ACKNOWLEDGEMENT

This work has been carried out at the Food Science Department, Faculty of Agriculture, Ain Shams University under the supervision of Prof. Dr. G. A. MAHRAN, Prof.Dr. LAILA B. ABD EL HAMID and Dr. H. F. HAGGAG to whom I have the pleasure of expressing my great gratitude for their kind advice, constructive criticism and unremitting assistance right through the course of investigation.

## CONTENTS

|                                                                                                                                                  | Page                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| INTRODUCTION                                                                                                                                     | 1                    |
| REVIEW OF LITERATURE                                                                                                                             | 4                    |
| Functional properties of milk proteins                                                                                                           | 4                    |
| 1. Solubility                                                                                                                                    | 7                    |
| 2. Emulsifying property                                                                                                                          | 12                   |
| 3. Hydration property                                                                                                                            | 20                   |
| 4. Foaming property                                                                                                                              | 23                   |
| 5. Buffer intensity                                                                                                                              | 27                   |
| MATERIALS AND METHODS                                                                                                                            | 28                   |
| A- Materials                                                                                                                                     | 28                   |
| B- Methods                                                                                                                                       | 28                   |
| 1. Preparation of different caseins                                                                                                              | 28                   |
| <ul><li>a) Total milk proteinates</li><li>b) Casein co-precipitate</li><li>c) Hydrochloric and lactic caseins</li><li>d) Rennet casein</li></ul> | 28<br>29<br>29<br>29 |
| 2. Chemical analysis                                                                                                                             | 30                   |
| <ul><li>a) Moisture and ash</li><li>b) Total protein</li><li>c) Lactose</li></ul>                                                                | 30<br>30<br>30       |
| <ul><li>3. Functional properties</li><li>a) Protein solubility</li><li>b) Emulsifying capacity and emulsion</li></ul>                            | 30<br>30             |
| stability                                                                                                                                        | 31                   |

|       |      |                                                                                                                                    | Page                 |
|-------|------|------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|       |      | <ul><li>d) foaming expansion and stability</li><li>e) Buffer intensity</li></ul>                                                   | 32<br>33             |
|       | 4.   | Statistical analysis                                                                                                               | 34                   |
| RESUL | S A  | ND DISCUSSION                                                                                                                      | 35                   |
| A-    |      | oss chemical composition of different sein preparations                                                                            | 35                   |
|       | 1.   | Cow's milk protein                                                                                                                 | 35                   |
|       | 2.   | Buffaloe's milk protein                                                                                                            | 37                   |
| В-    | - Fu | nctional properties                                                                                                                | 41                   |
|       | 1.   | Solubility a) Solubility of cow's milk proteins b) Solubility of buffaloe's milk proteins                                          | 41<br>41<br>47       |
|       | 2.   | Emulsifying properties  a) Total milk proteinates  i- Cow's total milk proteinates  ii- Buffaloe's total milk proteinates          | 54<br>55<br>55<br>58 |
| •     |      | <ul> <li>b) Casein co-precipitate</li> <li>i- Cow's casein co-precipitate</li> <li>ii- Buffaloe's casein co-precipitate</li> </ul> | 59<br>59<br>63       |
|       |      | <ul><li>c) Hydrochloric casein</li><li>i- Cow's HCl-casein</li><li>ii- Buffaloe's HCl-casein</li></ul>                             | 65<br>65<br>67       |
|       |      | <pre>d) Lactic-casein   i- Cow's lactic casein   ii- Buffaloe's lactic casein</pre>                                                | 69<br>69<br>71       |
|       |      | e) Rennet-casein<br>i- Cow's rennet casein<br>ii- Buffaloe's rennet casein                                                         | 73<br>73<br>75       |
|       | 3.   | Water and oil absorption                                                                                                           | 85                   |

|    |    |                                                                                              | Page              |
|----|----|----------------------------------------------------------------------------------------------|-------------------|
|    | a) | Cow's milk protein                                                                           | 86                |
|    | b) | Buffaloe's milk protein                                                                      | 90                |
| 4. | Fo | am expansion and stability                                                                   | 98                |
|    | a) | Total milk proteinates i- Cow's total milk proteinates ii- Buffaloe's total milk proteinates | 99<br>99<br>102   |
|    | b) | Casein co-precipitate i- Cow's casein co-precipitate ii- Buffaloes' casein co-precipitate    | 104<br>104<br>107 |
|    | c) | Hydrochloric casein i- Cow's HCl-casein ii- Buffaloe's HCl casein                            | 110<br>110<br>112 |
|    | a) | Lactic casein i- Cow's lactic casein ii- Buffaloe's lactic casein                            | 115<br>115<br>117 |
|    | e) | Rennet casein i- Cow's rennet casein ii- Buffaloe's rennet casein                            | 120<br>120<br>122 |
| 5. | Bu | ffer intensity                                                                               | 131               |
|    | a) | Total milk proteinates i- Cow's total milk proteinates ii- Buffaloe's total milk proteinates | 131<br>131<br>134 |
|    | b) | Casein co-precipitate i- Cow's casein co-precipitate ii- Buffaloe's casein co-precipitate    | 134<br>134<br>137 |
|    | c) | HCl-casein i- Cow's HCl-casein ii- Buffaloe's HCl-casein                                     | 139<br>139<br>139 |
|    | đ) | Lactic casein                                                                                | 141               |

|                                                                      | Page              |
|----------------------------------------------------------------------|-------------------|
| i- Cow's lactic-casein<br>ii- Buffaloe's lactic casein               | 142<br>144        |
| e) Rennet casein i- Cow's rennet casein ii- Buffaloe's rennet casein | 146<br>146<br>148 |
| SUMMARY                                                              | 154               |
| REFERENCES                                                           | 166               |
| ARABIC SUMMARY                                                       | _                 |

### LIST OF TABLES

| No. | Title                                     | Page |
|-----|-------------------------------------------|------|
| 1   | Typical functional properties performed   |      |
|     | by functional proteins in food systems.   | 5    |
| 2   | Chemical composition of prepared cow's    |      |
|     | milk proteins.                            | 36   |
| 3   | Chemical composition of prepared buffa-   |      |
|     | loe's milk proteins.                      | 38   |
| 4   | Effect of drying system and environmental |      |
|     | pH on cow's milk proteins solubility.     | 42   |
| 5   | Analysis of variance for the effect of    |      |
|     | drying system and environmental pH on     |      |
|     | the solubility % of cow's milk proteins   | 44   |
| 6   | Effect of drying system and environmental |      |
|     | pH on buffaloe's milk proteins solubility | 48   |
| 7   | Analysis of variance for the effect of    |      |
|     | drying system and environmental pH on the |      |
|     | solubility % of buffaloe's milk proteins  | 49   |
| 8   | Analysis of variance for buffaloe's and   |      |
|     | cow's milk protein solubility %.          | 52   |
| 9   | Effect of drying system and environmental |      |
| -   | pu on the emulsion activity index (EAI)   |      |

| No. | Title                                                                                                                                                      | Page |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | and emulsion stability index (ESI) of cow's total milk proteinates.                                                                                        | 56   |
| 10  | Effect of drying system and environmental pH on the emulsion activity index (EAI) and emulsion stability index (ESI) of buffaloe's total milk proteinates. | 59   |
| 11  | Effect of drying system and environmental pH on the emulsion activity index (EAI) and emulsion stability index (ESI) of cow's milk casein co-precipitate.  | 61   |
| 12  | Effect of drying system and environmen-                                                                                                                    |      |
|     | tal pH on the emulsion activity index (EAI) and emulsion stability index (ESI) of buffaloe's milk casein co-precipitate                                    | 64   |
| 13  | Effect of drying system and environmental pH on the emulsion activity index (EAI) and emulsion stability index(ESI) of cow's milk HCl casein.              | 66   |
| 14  | Effect of drying system and environmental pH on the emulsion index (EAI) and emulsion stability index (ESI)of buffaloe's milk HCl casein.                  | 68   |
| 15  | Effect of drying system and environmental pH on the emulsion activity index (EAI) and emulsion stability index (ESI) of cow's milk lactic casein.          | 70   |

| No.       | Title                                                                                                                                                                  | Page |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 16        | Effect of drying system and environmental pH on the emulsion activity index (EAI) and emulsion stability index (ESI) of buffaloe's milk lactic casein.                 | 72   |
| <b>17</b> | Effect of drying system and environmental pH on the emulsion activity index (EAI) and emulsion stability index (ESI) of cow's milk rennet casein.                      | 74   |
| 18        | Effect of drying system and environmental pH on the emulsion activity index (EAI) and emulsion stability index (ESI) of buffaloe's milk rennet casein.                 | 76   |
| 19        | Analysis of variance for the effect of drying system and environmental pH on the emulsion activity index (m <sup>2</sup> g <sup>-1</sup> ) of cow's milk proteins.     | 79   |
| 20        | Analysis of variance for the effect of drying system and environmental pH on the emulsion activity index (m <sup>2</sup> g <sup>-1</sup> )of buffaloe's milk proteins. | 81   |
| 21        | Analysis of variance for buffaloe's and cow's milk proteins emulsion activity index. (m <sup>2</sup> g <sup>-1</sup> ).                                                | 82   |

| No. | Title                                                                                                                                          | Page |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 22  | Water and oil absorption capacity of cow's milk proteins preparations.                                                                         | 87   |
| 23  | Analysis of variance of water and oil absorption capacity of cow's milk proteins preparations.                                                 | 89   |
| 24  | Water and oil absorption capacity of buffaloe's milk proteins preparations                                                                     | 91   |
| 25  | Analysis of variance of water and oil absorption capacity of buffaloe's milk proteins preparations.                                            | 93   |
| 26  | Analysis of variance of water and oil absorption capacity for different buffaloe's and cow's milk proteins preparations.                       | 95   |
| 27  | Effect of drying system and environmental pH on the foam expansion (FE%) and foam volume stability(FVS) of cow's total milk proteinates.       | 100  |
| 28  | Effect of drying system and environmental pH on the foam expansion (FE%) and foam volume stability (FVS) of buffaloe's total milk proteinates. | 103  |

| No. | Title                                                                                                                                                    | Page |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 29  | Effect of drying system and environmental pH on the foam expansion (FE%) and foam volume stability (FVS) of cow's casein co-precipitate.                 | 105  |
| 30  | Effect of drying system and environmen-<br>tal pH on the foam expansion (FE%) and<br>foam volume stability (FVS) of buffaloe's<br>casein co-precipitate. | 108  |
| 31  | Effect of drying system and environmental pH on the foam expansion (FE%) and foam volume stability (FVS) of cow's HCl-casein.                            | 111  |
| 32  | Effect of drying system and environmen 0 tal pH on the foam expansion (FE%) and foam volume stability (FVS) of buffaloe's HCl casein.                    | 113  |
| 33  | Effect of drying system and environmental pH on the foam expansion (FE%) and foam volume stability (FVS) of cow's lactic casein.                         | 116  |
| 34  | Effect of drying system and environmental pH on the foam expansion (FE%) and foam foam volume stability (FVS) of buffatoe's lactic casein.               | 118  |