



# ULTIMATE STRENGTH OF TAPERED PLATE GIRDERS UNDER COMBINED SHEAR AND BENDING

By

Farah Fayrouz El Dib

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the degree of
DOCTOR OF PHILOSOPHY
in
Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA – EGYPT
2015

## ULTIMATE STRENGTH OF TAPERED PLATE GIRDERS UNDER COMBINED SHEAR AND BENDING

By Farah Fayrouz El Dib

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the degree of
DOCTOR OF PHILOSOPHY
in
Structural Engineering

Under the Supervision of

Prof. Dr. Metwally H. Abu-Hamd

Professor of Steel Construction Department of Structural Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA – EGYPT 2015

## ULTIMATE STRENGTH OF TAPERED PLATE GIRDERS UNDER COMBINED SHEAR AND BENDING

#### By Farah Fayrouz El Dib

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the degree of
DOCTOR OF PHILOSOPHY
in
Structural Engineering

Approved by the
Examining Committee

Prof. Dr. Metwally Hassan Abu-Hamd, Thesis Main Advisor

Prof. Dr. Shearif Ahmed Murad, Internal Examiner

Prof. Dr. Abdelrahim Khalil Dessouki, External Examiner, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA – EGYPT

Engineer's Name: Farah Fayrouz El Dib

Date of Birth: 12/2/1984 Nationality: Egyptian

E-Mail: <u>farah\_fayrouz@yahoo.com</u>

Phone: 01006207640

Address: 65 Al Tahrir str. Sheraton,

Al Nozha

Registration Date: 1/3/2010
Awarding Date: .../.../2015
Degree: Doctor of Philosophy

Department: Structural Engineering

Supervisors:

Prof. Dr. Metwally H. Abu Hamd

.....

Examiners:

Prof. Dr. Abdelrahim Kh. Dessouki (External Examiner-Ain

Shams University)

Prof. Dr. Sherif A. Murad.....(Internal Examiner)
Prof. Dr. Metwally H. Abu-Hamd. (Thesis Main Advisor)

Title of Thesis:

Ultimate strength of tapered plate girders under combined shear and bending

Key Words:

Tapered plate, Buckling, Ultimate Load, Pure Shear, Pure Moment, Interaction

Summary:

A procedure is developed, presented and evaluated to consider geometrical shape and structural imperfections in tapered web plate girders to calculate the ultimate bending strength under uniform stresses. The adjusted residual stress distribution in tapered web plates is used to determine ultimate loads, considering structural imperfections, using FEM / ANSYS 13, in addition to their corresponding elastic critical Eigen-Values, with and without residual stresses. Several figures represent the accurate as well as the approximate solutions, given by an equation or by ultimate pure and interaction stresses respectively.



### Acknowledgements

This study consumed huge amount of work, research and dedication. Still, it would not have been possible to present thesis in it's current form if we did not have a support of many individuals and organizations. Therefore we would like to extend our sincere gratitude to all of them.

First of all we are thankful to Housing and Building Research Center (HBRC) for their financial and logistical support.

We are also grateful to Prof. Dr. Metwally Abu-Hamd and Dr. Iman M. Abu-Hamd for provision of expertise and for providing necessary guidance concerning the study path. Without their superior knowledge and experience, the study would lack in quality of outcomes, and thus their support has been essential.

We would like to express our sincere thanks towards volunteer researchers who devoted their time and knowledge in the support of this study, especially Prof. Dr. Fayrouz El Dib for his consultancy along the study period.

Nevertheless, we express our gratitude toward our families and colleagues for their kind co-operation and encouragement which help us in completion of this thesis.

### **Table of Contents**

| Acknowledgements                                                                       | i     |
|----------------------------------------------------------------------------------------|-------|
| Table of Contents                                                                      | iii   |
| List of Tables                                                                         | vii   |
| List of Figures                                                                        | ix    |
| Nomenclature                                                                           | XV    |
| Abstract                                                                               | xix   |
| Chapter 1: Introduction                                                                | 1     |
| Chapter 2: Literature Review and Previous Work                                         | 5     |
| Chapter 3: Finite Element Analysis                                                     | 13    |
| 3.1 Analysis Assumptions                                                               | 13    |
| 3.2 Model Geometry                                                                     | 14    |
| 3.2.1 Continuity of the Finite Element Model                                           | 14    |
| 3.3 Model Loading For Pure Shear                                                       | 16    |
| 3.4 Model Bend Loading                                                                 | 19    |
| 3.5 Nonlinear Finite Element Techniques                                                | 21    |
| 3.5.1 Analytical Considerations of The Finite Element [24]                             | 21    |
| 3.5.2 The Arc-Length Method                                                            | 30    |
| 3.5.3 The Newton-Raphson (NR) Method                                                   | 31    |
| 3.5.4 Termination Schemes                                                              | 31    |
| 3.6 Verification of FEM Integrity                                                      | 33    |
| 3.6.1 Nonlinear inelastic Behavior                                                     | 33    |
| 3.6.2 Comparison with Previous Work for Pure Shear Loading                             | 34    |
| 3.6.2.1 Comparison with Abu-Hamd [14]                                                  | 34    |
| 3.6.2.2 Mirambell et al., [20]                                                         | 35    |
| 3.6.2.3 Chica et al., [22]                                                             | 37    |
| 3.6.3 Verification of FEM Integrity under Pure Bending                                 | 38    |
| 3.6.3.1 Nonlinear inelastic behavior                                                   | 38    |
| 3.6.3.2 Comparison with Previous Work                                                  | 39    |
| 3.6.3.3 Normalization of the Model Geometry                                            | 40    |
| 3.6.4 Verification and Comparison with Timoshenko [3] under Combined Bending and Shear | 40    |
| Comonica Dename ana Sucai                                                              | /   1 |

| Chapter 4: Effect of Imperfection on Shear Strength                                                   |     |
|-------------------------------------------------------------------------------------------------------|-----|
| of Tapered Web Plate Girders                                                                          | 45  |
| 4.1 Investigated Imperfection Models                                                                  | 45  |
| 4.1.1 EN1993-1-5, Annex C recommendations:                                                            | 45  |
| 4.1.2 Model by Barth & White [6]                                                                      | 46  |
| 4.1.3 AASHTO/AWS D1.5M/D1.5: 2002 – Recommendations [27]                                              | 47  |
| 4.2 Calibration of Residual Stresses for Tapered Webs                                                 | 47  |
| 4.3 Effect of Imperfections on Inelastic Ultimate Strength                                            | 51  |
| 4.3.1 Effect of Geometrical Imperfections                                                             | 51  |
| 4.3.2 Effect of Residual Stresses                                                                     | 52  |
| 4.3.3 The Selected Imperfections                                                                      | 56  |
| 4.4 Effect of residual stresses on elastic shear strength                                             | 57  |
| 4.5 Effect of residual stresses on elastic bending strength                                           | 60  |
| Chapter 5: Shear strength of tapered web plate girder                                                 | 64  |
| 5.1 Elastic buckling shear strength                                                                   | 64  |
| 5.1.1 Elastic shear buckling strength without residual stress effect                                  | 64  |
| 5.1.2 Elastic shear buckling strength with residual stress effect                                     | 72  |
| 5.2 Ultimate shear strength of tapered web plate girders                                              | 77  |
| 5.2.1 Analysis considerations                                                                         | 77  |
| 5.2.2 Recommendations and implemented imperfection model                                              | 78  |
| 5.2.3 Imperfection model effect on behavior of tapered web plate girders under uniform shear stresses | 78  |
| 5.2.3.1 Shear deformation behavior                                                                    | 78  |
| 5.2.4 Variation of ultimate shear strength with web slenderness and imperfection models               | 80  |
| 5.2.5 Numerical evaluation                                                                            | 80  |
| 5.2.5.1 Results for aspect ratio 1.0 and 2.0                                                          | 83  |
| 5.2.5.2 Discussion of results for aspect ratio $\alpha = 1.0$                                         | 83  |
| 5.2.5.3 Discussion of results for aspect ratio $\alpha = 2.0$                                         | 83  |
| 5.2.6 Numerical comparison with code provisions                                                       | 93  |
| 5.2.7 Approximate analytical solution                                                                 | 100 |
| 5.2.7.1 Determination of eauivalent height                                                            | 100 |
| 5.2.7.2 Effective depth approach                                                                      | 101 |

| 5.2.7.3 Direct approach                                                                                                     | 106        |
|-----------------------------------------------------------------------------------------------------------------------------|------------|
| Chapter 6: Bend buckling strength of tapered web plate girders                                                              | 113<br>113 |
| 6.1 Elastic bend buckling strength of tapered web plate 6.1.1 Elastic bend buckling strength without residual stress effect | 113        |
| 6.1.2 Elastic bend buckling strength with residual stress effect                                                            | 124        |
| 6.2 Ultimate bending strength of tapered web plate girders                                                                  | 130        |
| 6.2.1 Analysis considerations                                                                                               | 130        |
| 6.2.2 Deformation behavior                                                                                                  | 131        |
| 6.2.3 Numerical evaluation                                                                                                  | 131        |
| 6.2.4 Approximate analytical solution                                                                                       | 143        |
| Chapter 7: Strength of tapered web plate girders under combined shear and bending                                           | 147        |
| 7.1 Elastic buckling under combined shear and bending                                                                       | 147        |
| 7.1.1 Presentation and analysis of results                                                                                  | 147        |
| 7.1.2 Approximate solution                                                                                                  | 158        |
| 7.1.3 Effect of residual stresses                                                                                           | 161        |
| 7.2 Ultimate strength of tapered web plate girders under combined bending and shear stresses                                | 164        |
| 7.2.1 Basic assunptions                                                                                                     | 164        |
| 7.2.2 Model behavior                                                                                                        | 166        |
| 7.2.3 Presentation of ultimate load results                                                                                 | 169        |
| 7.2.4 Approximate solution                                                                                                  | 182        |
| 7.2.5 Discussion of results                                                                                                 | 187        |
| Chapter 8: Conclusions and recommendations                                                                                  | 189        |
| References                                                                                                                  | 195        |



### **List of Tables**

| Table 1: Fcr/Fy for different model dimensions                                                       | 14 |
|------------------------------------------------------------------------------------------------------|----|
| Table 2: Comparison with the critical loads given in [20]                                            | 35 |
| Table 3: Comparison with the ultimate loads given in [20]                                            | 35 |
| Table 4: Comparison with Ultimate Loads in [20]                                                      | 37 |
| Table 5: Comparison with results Given in [22]                                                       | 38 |
| Table 6: Residual stress influence on ultimate flexural stress ratio                                 | 45 |
| Table 7 :Comparison between standard values and modified values for web compression residual stress. | 51 |