
THE PROBLEM OF CHILDHOOD TUBERCULOSIS IN EGYPT

THESIS

Submitted in Partial Fulfilment of the Master Degree in Pendiatrics

BY

SAMA ABD EL-ALIM MOUSSA SELIM (M.B., B. Ch.)

36893

SUPERVISED BY

Prof. Dr. ABD EL-KHALIK KHATTAB M.D. (Ain-Shams), Ph.D. (Ed.),

F.R.C.P. (Ed.), F.R.C.P. (Glsg.),

Professor of Paediatrics

Faculty of Medicine

- Ain Shams University, Cairo

Ain Shams University Faculty of Medicine (1987)

بسم اللمه الرحمان الرحمام

ACKNOWLEDGEMENT

In all gratitude, I wish to express most sincere thanks to Professor Dr. ABD EL-KHALIK KHATTAB for honouring me with the supervision of this work. He gave me a lot of his precious time to complete and fulfil this integrated subject. Without his great patience, valuable advice, constant assistance, continuous encouragement and critical supervision, this study would have not been performed as it came.

Up to our knowledge, this is the first work done at the university level in Egypt to explore the magnitude of the whole problem country-wide.

I take this oppertunity to extend my deep gratefulness and profound thanks to all Professors and the staff of pediatric department, Faculty of Medicine, Ain-Shams University, who contributed to deepen my knowledge in pediatrics.

Cairo, 1987

	CONTENTS	Page
_	Contents	i
-	List of Abbreviations	iii
_	Introduction	. 1
	* Review of Literature	3
-	History of Tuberculosis	3
-	Epidemiology	4
-	Bacteriology	8
-	Pathogenesis and Pathology	11
_	Immunity in Tuberculosis	19
_	The Tuberculin Test	26
	* Classification of Tuberculosis	31
-	Intrathoracic Tuberculosis	32
	1. Primary Pulmonary Tuberculosis	32
	2. Post-primary Tuberculosis	36
	3. Miliary Tuberculosis	38
	4. Tuberculous Pleurisy & Pleural Effusion	40
	5. Pericarditis	42
-	Extra thoracic Tuberculosis	42
	1. Tuberculosis of CNS	42
	2. Tuberculous Lymphadenitis	46
	3. Oral and Alimentary Tuberculosis	47
	4. Urogenital Tuberculosis	50
	5. Tuberculosis of the Skeletal System	51
	6. Tuberculosis of Skin	54
	7. Tuberculosis of The Eye	56
	8. Tuberculosis of Endocrine and Experime Clarks	

		Page
	9. Congential Tuberculosis	57
-	Non-tuberculous Mycobacteria	60
_	Diagnosis of Tuberculosis	64
-	Management of Tuberculosis	66
_	Chemotherapy of Tuberculosis	66
_	Corticosteroid Therapy	75
_	Surgery	76
_	Control of Tuberculosis	76
	* Chemoprophylaxis	77
	* BCG Vaccination	79
	* Vaccines other than living BCG	82
_	Childhood Tuberculosis in Egypt	84
	* Indices used in estimating the problem	89
	* Epidemiological situation of tuberculosis in Egypt	94
	* Tuberculin test	103
	* Pulmonary and Extrapulmonary Tuberculosis	105
	* Tuberculous meningitis	114
	* Non tuberculous Mycobacteria in Egypt	117
	* Tuberculosis Control in Egypt	118
	* BCG vaccination	120
_	Material and Methods	131
_	Results	134
_	Discussion	162
-	Evaluation of Egyptian TB control Program	166
_	Summary and Recommendations	ر 172 -
	Appendix I	
	References	
_		

LIST OF ABBREVIATIONS

A.R.E. : Arab Republic of Egypt. **BCG** Bacillus Calmette and Guerin c-AMP cyclic Adenosine Mono Phosphate : Central Agency for Public Mobilization CAPMAS and Statistics. 'الحهاز المركزي للتعبئة العامه والاحصا CAPMAS-S.A CAPMAS- Statistics Annual. CM1 : Cell-Mediated Immunity. CMIR Cell-Mediated Immune Response. CNS Central Nervous System CSF Cerebro-Spinal Fluid. D.R. Death Rate D.T.H. : Delayed Type Hypersensitivity. EMB Ethambutol Freund's Incomplete Adjuvant. FIA ICD International Classification of Diseases. IgM Immunoglobulin-M. INH Isoniazid : M.C.H. Mounira Children's Hospital. : M.M.R : Minute Mass Radiography. M.TB : Mycobacteria tuberculosis Non- tuberculous mycobacteria. N.TB : OTOld Tuberculin. P.A.S. : Paraminosalycilic Pan-America Sanitary Bureau. P.A.S.B. : מפק Purified Protein Dervitive RMP Rifampin SMStreptomycin : TB Tuberculosis. : TU Tuberculin unit United Nations Children's Fund UNICEF WHO-S.A. : World Health Organization-Statistics Annual. : World Health Organization- Technical WHO-T.R.S Reports Series.

Introduction

INTRODUCTION

Tuberculosis is still a major scourge of mankind mainly in the developing part of the world, but it also remains an important problem in many technically advanced countries (Bulla, 1977 a). It is still one of the principal causes of death in developing countries including Egypt. At least three million people die of tuberculosis every year, and each year some four to five million new smear positives develop, infecting those around them. Probably at least another five million active cases arise annually with negative smears, many of whom are positive only on culture (Grzybowski, 1983).

In spite of remarkable advances recently achieved in case finding, treatment and prevention of tuberculosis, yet not a single country throughout the world has been able to reach the target point of control which represents less than 1% natural tuberculin positivity among the 14 year age group children (Donia, 1981).

In Egypt, tuberculosis is still the second health problem, it is next only to Schistosomiasis. It is among the 10 leading causes of death in children, being exceeded only by gastroenteritis, acute respiratory infections and malnutrition. The incidence of infection as revealed by tuberculin positive reactors below the age of 15 years is 20-30 per cent (Madkour et al., 1978).

Tuberculosis affects all age groups especially infants and children. In infancy it has a high fatality because of the tendency to occurence of acute haematogenous forms of the disease, miliary tuberculosis and tuberculous meningitis. All types of tuberculosis are detected in the pediatric age group. Children seem most susceptible following a respiratory tract infection which may alter the local resistance. As a rule the younger the child at the time of infection the closer the infector in relationship (Miller, 1975).

Tuberculosis was proved to be one of the main causes of marasmus and Kwashiorkor. The fatality rate among the tuberculous cases is very high.83.3% of the cases of marasmus and Kwashiorkor beyond the third year of life was due to tuberculosis.

This calls for urgent and active measures to be taken for the control of this preventable disease (El-Zawahry, 1974).

Tuberculosis is not likely to disappear in the near future. Efforts to cut the chain of infection will therefore have to continue for many years if the disease has be controlled (Bulla, 1977b).

Review of Literature

REVIEW OF LITERATURE

HISTORY OF TUBERCULOSIS

A disease that was probably tuberculosis was known as early as 1000 B.C. Hippocrates described the symptoms of a malady called "phthisis", meaning to waste away and recognized nodules (phymato) of the lung as a feature of the disease. Such nodules are called "tubercula" in Latin. The term "tuberculosis" was first applied to the clinical and pathologic description of the disease in 1834. The causative microorganism, discovered by Koch in 1882, became known as the tubercle bacillus. By 1900, in addition to the human tubercle bacillus (Mycobacterium tuberculosis), two additional species of tubercle bacilli (Mycobacterium bovis and Mycobacterium avium) were recongized to cause disease in man, as well as infections in cattle and birds. (Harris and McClement, 1983).

There is an excellent description of the symptomatology and pathology of tuberculosis in the Arabic manuscripts: "Al-Canon" by Ibn-Sina (A.D. 1036), "Al-Hawi Fi El-Tib" by Al-Razi (A.D.925). (Al-Damluji and Bignall, 1976).

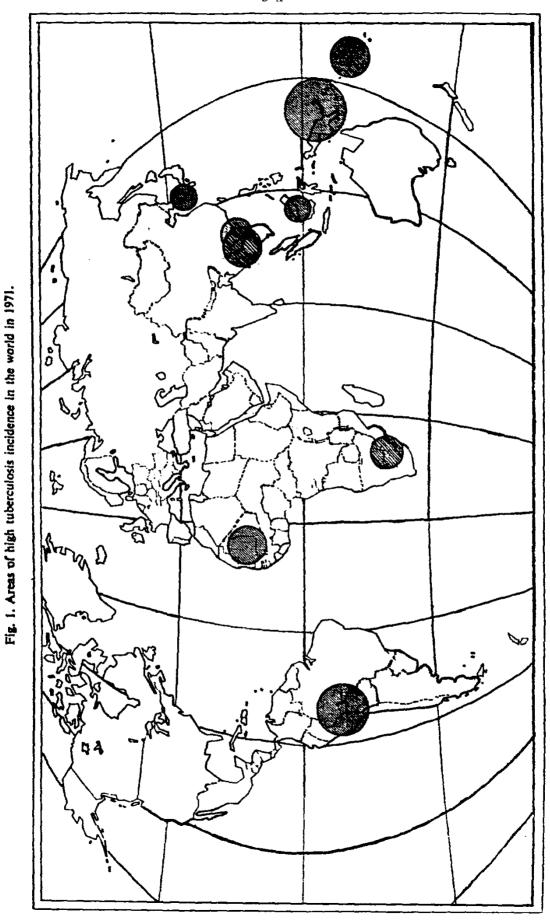
The peak incidence of the disease probably occured in the ninteenth century, as a result of rapid urbanization and poor living conditions that followed the industrial

revolution. It was called the "Capten of the Men of Death", and before it was known as "white plague" or "consumption", and thought to be a degenerative hereditary condition (Huber, 1982).

The findings of radiology and bacteriology helped in developing further knowledge of the disease. Many ahoivements have been gained in the battle against tuberculosis in the last forty years. This is attributed to improved socioeconomic conditions and discovery of antituberculous drugs, streptomycin (1944), para-aminosalicylic acid (1946) and isoniazid (1951). New drugs: rifampicin and ethambutol (1968) have greatly improved the case rate of tuberculosis (Lefford, 1981).

Epidemiology

Transmission:


Aerosolized droplets of liquid, three to five microns in size, contain tubercle bacilli. Dissemination of such droplets occurs if generation within the respiratory system of a person with active ulcerative lesions of the lung is coupled with explusion during talking, sneezing, or coughing which is the most important mechanism (Louden and Sophn, 1969). Small droplets give droplet nuclei by rapid evaporation of water. These remain suspended in the

air for long periods. Inhaled large particles are deposited in the upper respiratory passages which is realtively resistant to tuberculous infection and they are usually expelled (Harris and Mc Clement, 1983).

Thus in spreading of childhood tuberculosis the source of infection is usually an adult with sputum positive pulmonary tuberculosis. The unknown cases are more dangerous than the known ones under treatment, even if the latter is sputum positive (Udani, 1981).

Children with primary tuberculosis rarely infect other children. Most of them have no symptoms and produce no sputum. Children play an important role in transmission of tuberculosis because they may harbour a partially healed infection that lies dormant, only to reactivate as infectious pulmonary tuberculosis many years later. Thus infected children constitute a long lasting reservoir of tuberculosis in the population (Phelan et al., 1982).

Tuberculosis can be acquired by ingestion of large inocula of tubercle bacilli, but now decreased after control of bovine tuberculosis and pasteurization of milk. Transmission by contaminated fomites is rare. Accidental percutaneous inoculation may rarely occur. Venereal transmission from tuberculosis of the prostate is extremely unusual (Wolinsky, 1983).

(After: Bulla, 1977 b).