100CC 14

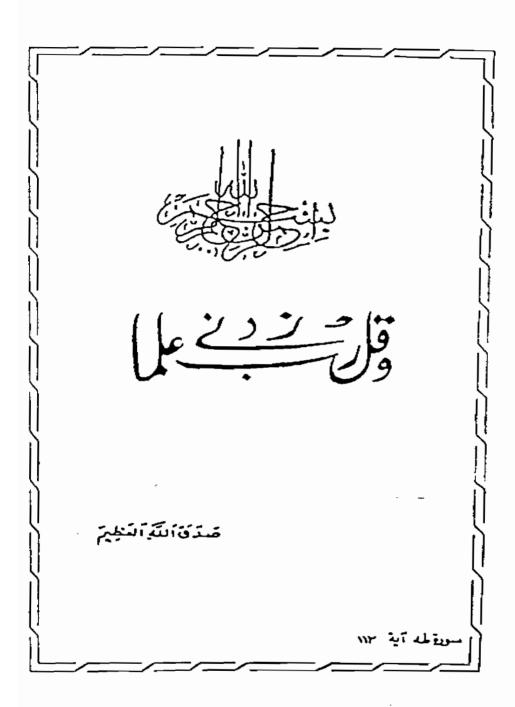
EFFECT OF SALT STRESS ON SOME PHYSIOLOGICAL AND PRODUCTIVE TRAITS IN BROILER

by

ABDEL_MAGEED MEKHEMAR ABDEL_MAKSOUD-

Thesis submitted to Faculty of the Graduate School of the University of Ain Shams in partial fulfilment of the requirements for the degree — of Master of Agricultural Science

636.51 A. M

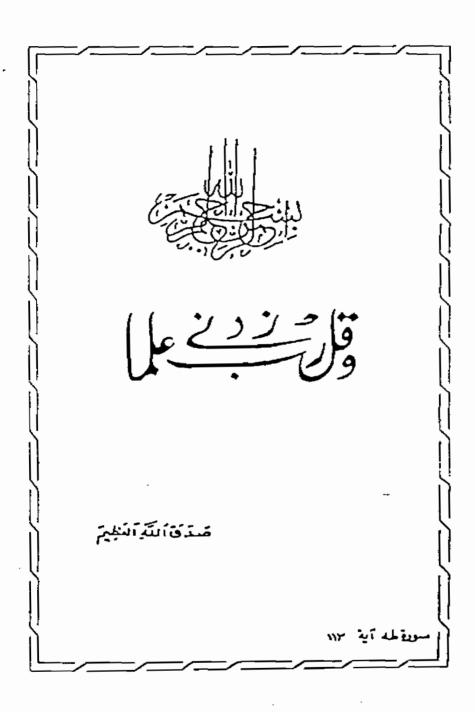

in

25012

Poultry Physiology

1987

Department of Animal Production Faculty of Agriculture Ain Shams University



Assistant Professor of Genetics, Faculty of Agriculture, Ain Shams University for their valuable suggestions and sincere advices in the statistical analysis.

The Co-operation of the members of the Animal Production Department, is deeply appreciated.

Finally, I sincerely thank my wife and my parents for their patience, encouragement and enthusiasm during the course of this work.

APPROVAL SHEET

Title of Thesis: Effect of salt stress on some physiological and productive traits in broiler.

Name of Candidate: ABDEL - MAGEED MEKHEMAR ABDEL - MAKSOUD

Master of Science, 1987.

Approved by:

Dr.: Roal History

Dr.: Mone F. Ali

Committee in charge .

Date: 22/3 / 1987.

ACKNOWLEDGEMENTS

í

1 50

The auther wishes to express his sincere gratitude and deep appreciation to Dr. Maie Fouad Ali, Professor of Avian Physiology, Faculty of Agriculture, Ain Shams University for suggesting the problems, her guidance, close supervision, constructive criticism during the prepartion of this manuscript without which, all this would not have been possible.

My sincere appreciation and deep gratitude are extended to Dr. Mohammed Afifi, Professor of Poultry Nutrition and Head of Animal Production Department, Faculty of Agriculture, Ain Shams University for his suggestions, encouragement, supervising, reading the manuscript and helping me during the whole work.

Thanks are also due to Dr. Husein El-Aliyly, Professor of Poultry Nutrition, Faculty of Agriculture, Ain Shams University for his continuous encouragement.

My sincere thanks are also expressed to Dr. Fathy Abdel Tawab, Professor of Genetics and Head of Genetics Department, Faculty of Agriculture, Ain Shams University for making the biochemical genetics laboratory available to excute the biochemical part of this study.

Special thanks are also due to Dr. Yahea El- Meckawy, Assistant Professor of Animal Physiology, Faculty of Agriculture, Al- Azher University for his sincere assistance in determining hormonal assay.

Kind acknowledgement is also due to Dr. El-Sayed Salah Galal, Professor of Animal Breeding and Dr. Alia A.El-Seoudy

Assistant Professor of Genetics, Faculty of Agriculture, Ain Shams University for their valuable suggestions and sincere advices in the statistical analysis.

0 .

The Co-operation of the members of the Animal Production Department, is deeply appreciated.

Finally, I sincerely thank my wife and my parents for their patience, encouragement and enthusiasm during the course of this work.

CONTENTS

		Page
I.	Introduction	1
II.	Review of Literature	2
	A. Physiological Parameters	
	1. Corticosterone and aldosterone	2
	2. Respiratory rate and rectal temperature	3
	3. Hematocrit value	4
	4. Plasma proteins	5
	B. Productive Parameters	
	1. Feed consumption and growth	7
	2. Water consumption	13
	3. Water/feed ratio	15
	4. Droppings moisture	15
	5. Rate of mortality	16
III.	Materials and Methods	20
IV.	Results	28
	A. Physiological Parameters	
	1. Aldosterone level in plasma	28
	2. Corticosterone level in plasma	28
	3. Rectal temperature	31
	4. Respiratory rate	41
	5. Hematocrit value	51
	6. Total plasma proteins	53
	7. Plasma protein electrophoretic patterns	57
	B. Productive Parameters	
	1. Body weight	59
	2. Gain in weight	5 9

		Page
	3. Feed consumption	62
	4. Water consumption	65
	5. Water/feed ratio	65
	6. Feed efficiency	69
	7. Droppings moisture	69
	8. Rate of mortality	73
V.	Discussion	75
VI.	Summary and conclusions	84
VII.	Appendix tables	87
viii.	References	103
IX.	Arabic summary	

LIST OF TABLES

Table	Page
1. Composition of the experimental ration	. 23
2. Aldosterone and corticosterone level in plasma of	<u>г</u> .
chicks receiving different salt levels in drinking	Š
water at four weeks of age	. 29
3. ANOVA of effect of different salt levels in drink-	-
ing water on aldosterone level in plasma at four	
weeks of age	87
4. ANOVA of effect of different salt levels in drink-	-
ing water on corticosterone level in plasma at	;
four weeks of age	. 87
5. Diurnal rectal temperature, degree centigrade, of	:
chicks receiving different salt levels in drinking	5
water at one week of age	. 32
6. Diurnal rectal temperature, degree centigrade, of	
chicks receiving different salt levels in drinking	5
water at four weeks of age	33
7. Rectal temperature in degree centigrade of chicks	;
receiving different salt levels in drinking water.	34
8. ANOVA of effect of different salt levels in drink-	
ing water on the diurnal rectal temperature at one	;
week of age	88
9. ANUVA of effect of different salt levels in drink-	-
ing water on the diurnal rectal temperature at	
four weeks of age	89
10. Diurnal respiratory rate of chicks receiving diff-	
erent salt levels in drinking water at one week of	•
age	42

11.	Diurnal respiratory rate of chicks receiving diff-	
	erent salt levels in drinking water at four weeks	
	of age	43
12.	Respiratory rate of chicks receiving different	
	salt levels in drinking water	44
13.	ANOVA of effect of different salt levels in drink-	
	ing water on the respiratory rate at one week of	
	age	90
14.	ANOVA of effect of different salt levels in drink-	
	ing water on the diurnal respiratory rate at four	
	weeks of age	91
15.	Hematocrit value of chicks receiving different	
	salt levels in drinking water	52
16.	ANOVA of effect of different salt levels in drink-	
	ing water on hematocrit value at one week of age .	92
17.	ANOVA of effect of different salt levels in drink-	
	ing water on hematocrit value at four weeks of age	92
18.	Total plasma proteins (g/100 ml) of chicks receiv-	
	ing different salt levels in drinking water	55
18 a	Visual ranks of plasma protein electrophoretic	
	patterns for broiler chicks receiving different	
	salt levels in drinking water	58
19.	ANOVA of effect of different salt levels in drink-	
	ing water on total plasma proteins at one week of	
	age	93
20.	ANOVA of effect of different salt levels in drink-	
	ing water on total plasma proteins at four weeks	

21.	Body weight (gm) of chicks receiving different	
	salt levels in drinking water	60
22.	ANOVA of effect of different salt levels in drink-	
	ing water on body weight at one week of age	94
23.	ANOVA of effect of different salt levels in drink-	
	ing water on body weight at two weeks of age	94
24.	ANOVA of effect of different salt levels in drink-	
	ing water on body weight at three weeks of age	95
25.	ANOVA of effect of different salt levels in drink-	
	ing water on body weight at four weeks of age	95
26.	Feed consumption, water consumption, weight gain,	
	feed efficiency and water/feed ratio of chicks re-	
	ceiving different salt levels in drinking water	64
27.	ANOVA of effect of different salt levels in drink-	
	ing water on the gain weight at four weeks of age.	96
28.	ANOVA of effect of different salt levels in drink-	
	ing water on the feed consumption at four weeks of	
	age	96
29.	ANOVA of effect of different salt levels in drink-	
	ing water on the water consumption at four weeks	
	of age	97
30.	ANOVA of effect of different salt levels in drink-	
	ing water on water/feed ratio at four weeks of age	97
31.	ANCVA of effect of different salt levels in crink-	
	ing water on the feed efficiency at four weeks of	
	age	97
32.	Droppings moisture of chicks receiving different	
	salt levels in drinking water	71

1
٦,

33.	ANOVA of effect of different salt levels in drink-	
	ing water on droppings moisture at one week of age	98
34.	ANOVA of effect of different salt levels in drink-	
	ing water on droppings moisture at two weeks of	
	age	98
35.	ANOVA of effect of different salt levels in drink-	
	ing water on droppings moisture at three weeks of	
	age	99
36.	ANOVA of effect of different salt levels in drink-	
	ing water on droppings moisture at four weeks of	
	age	99
37.	Rate of mortality of chicks receiving different	
	salt levels in drinking water	14
38.	Vitamins and minerals mixture	100

LIST OF FIGURES

Figure	Page
1. Effect of different salt levels in the drinking	
water on aldosterone levels in plasma at the	
fourth week of age	30
2. Effect of different salt levels in the drinking	
water on corticosterone levels in plasma at the	
fourth week of age	30
3. Diurnal rectal temperature of broiler chicks at	
one week of age after receiving different salt	
levels (a,b,c,d and e) in the drinking water	35
4. Diurnal rectal temperature of broiler chicks at	
the fourth week of age after receiving differe-	•
nt salt levels (a,b,c,d and e) in the drinking	
water	38
5. Diurnal respiration rate of broiler chicks at	
one week of age after receiving different salt	
levels (a,b,c,d and e) in drinking water	45
6. Diurnal respiration rate of chicks at the four-	
th week of age after receiving different salt	
levels (a,b,c,d and e) in the drinking water	48
7. Effect of different salt levels in drinking	
water on hematocrit value of broiler chicks at	
one and four weeks of age	54
8. Effect of different salt levels in drinking	
water on total plasma proteins of broiler chick	
at one and four weeks of age	56