

THEORETICAL AND EXPERIMENTAL INVESTIGATIONS OF THERMAL CONDUCTIVITY OF PLAIN AND REINFORCED CONCRETE WITH APPLICATION TO WATER TANKS

(CC)

THESIS

SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CIVIL ENGINEERING

BY

HEBA HAMED BAHNASAWY

B.Sc. Civil Engineering, Cairo University, 1971M.Sc. Civil Engineering, Ain-Shams University, 1979

(24.1834) (11.14)

FACULTY OF ENGINEERING
AIN-SHAMS UNIVERSITY, CAIRO

[1986]

Theoretical and Experimental Investigations of Thermal Conductivity of Plain and Reinforced Concrete With Application to Water Tanks.

Ву

Heba Hamed Bahnasawy

(B.Sc., M.Sc.)

Examiners Signature Date

1- Prof Dr. - Ing. H. TEL-Anousy 15.6.

2- Prof. Dr. - Ing. M. S. Fe- Haway M. S. Ge-4. 18. 7. 14. 986 C.

3- Prof. Dr. A. Kerim Ata A. harm 7/4/1986

4-

ACKNOLEDGEMENT

The author wishes to express her deep gratitude and sincere appreciation to **Dr. Abd El-Kerim Atta**, Professor of strength of materials, Faculty of Engineering, Ain-Shams University for his guidance, generous supervision and continuous encouragement which have greatly contributed in achieving this work.

The author wishes to express her deep thanks to **Dr.**Mohamed Salah El-Hoary, Head of Public Work Department, Faculty of Engineering, Ain-Shams University for his sincere help.

Special thanks to **Dr. Ezzat Hashem Morsy,** Prof. of strength of materials, General Organization of Housing, Building and Planning Research for his help and facilities given to carry out this work. Thanks are also to the staff of strength of materials laboratory for their help.

The author is appreciated to **Dr. George Bassili Hanna**, Prof. of building physics, General Organization of Housing, Building and Planning Research for his guidence and encouragement during this work. Appreciation is also extend to his staff of Building Physics Laboratory.

Thanks are also given to **Dr. Abou Zeid Rageh,** Chairman of General Organization of Housing, Building and Planning Research for his encouragement.

Finally, the author would like to acknowledge the encouragement and support shown by her mother and her husband.

CONTENTS

		Page
AC KNO	OWLEDGEMENT	i
	ENTS	i 1
	OF TABLES	vii
	OF FIGURES	х
	rions	xxi
INTRO	DDUCTION	xxi
	TER 1 REVIEW OF LITERATURE ON THERMAL PERFORMANCE OF CONCRETE	
1.1	Thermophysical Properties of Concrete	1
	1.1.1 Thermal Conductivity	2 12 15 16
1.2	Thermal Climatic Environmental Variables	19
	1.2.1 Solar Radiation	20 22 25 26
1.3	Heat Transfer Through Concrete Structures	26
	1.3.1 Heat Flow by Conduction	28 29 31
1.4	Thermally Induced Stresses and Deformations in Concrete Structures	34
1.5	Comments on the Review of Literature	42
CHAP	TER 2 SCHEME OF RESEARCH WORK	
2.1	Schedule of Thermal Conductivity of Plain and Reinforced Concrete Schedule of Temperature Prediction and Thermally Induced Stresses	44
۷.۷	of Concrete Slabs	45
2.3	Experimental and Theoretical Investigations Schedule of Heat Response of Reinforced Concrete Water Tank	45
CHAP	TER 3 THERMAL CONDUCTIVITY OF PLAIN AND REINFORCED CONCRETE	
3.1	Introduction	50
3.2	Properties of Concrete Ingradients Used in Tested Mixes	56
3.3	Steady State Method for Testing Thermal Conductivity	59
3.4	Test Procedure and Results	61

			Page
3.5	Discuss	sion	61
	3.5.1	Effect of Concrete Ingradients on Test Results	61
		3.5.1.1 Cement Content Effect	61 69 72 76 76
	3.5.2	Proposed General Relation Between Thermal Conductivity and Amount of Concrete Constituents	80
	3.5.3	Proposed General Relation Between Thermal Conductivity of Concrete and its Properties	81
		3.5.3.1 28 Days Compressive Strength of Concrete 3.5.3.2 Concrete Density	81 85
CHA	PTER 4	THEORETICAL INVESTIGATION OF CONCRETE THERMAL RESPONSE	
4.1	Introd	uction	87
4.2	One-Di	mensional Model for Predicting The Temperature Distribution	88
4.3	Bounda	ry Conditions of the Slab and Water Tank	90
	4.3.1 4.3.2	Boundary Condition at the Outside Surface Boundary Condition at the Slab Bottom Surface Facing the	90
	4.3.3 4.3.4 4.3.5 4.3.6 4.3.7	Boundary Condition at the Inside Surface of the Wall Boundary Condition at the Inside Air Boundary Condition at the Inside Water Boundary Condition of the Water Exposed to Atmosphere Boundary Condition of Periodicity	93 94 95 96 98 99
4.4	Finite	Difference Procedure	100
4.5	Slab H	leat Balance Equations in Finite Difference Form	101
4.6	Water	Tank Heat Balance Equations in Finite Difference Form	106
	4.6.1	Case of Covered Full Water Tank	106
		4.6.1.1 Heat Balance Equations at the Outside Concrete Walls Surfaces	107
		4.6.1.2 Heat Balance Equations Within the Concrete Walls	111
		4.6.1.3 Heat Balance Equations at the Inside Surfaces of the Concrete Walls	112
		4.6.1.4 Heat Balance Equation at the Inside Water	113
	4.6.2	Case of Uncovered Full Water Tank	115
		4.6.2.1 Heat Balance Equation at the Inside Water Exposed to the Atmosphere	115

			Page
	4.6.3	Case of Covered Empty Water Tank	117
	.,,,,,	4.6.3.1 Heat Balance Equations at the Inside Surfaces of the Concrete Walls	117 118
4.7	Therma 4.7.1 4.7.2	One Dimensional Spring System Analogy Basic Structural Principles	119 120 125
	TER 5	PREDICTION OF TEMPERATURES AND THERMALLY INDUCED STRESSES IN CONCRETE SLABS	
5.1	Introd	uction	129
5.2	Theore	tical Prediction of Temperatures in Concrete Slab	129
	Sugges	mental Verification of Temperature Values Prepicted from ted Mathematical Model	130
5.4	Compar eratur	ison Between Theoritical and Experimental Concrete Temp-	137
5.5	Theore	tical Determination of Thermally Induced Stresses	137
	Effect	of Slab Thickness on Temperatures and Thermally Induced	143
5.7	Effect	of Reinforcement Percentage on Slab Temperatures and Ther- Induced Stresses	147
CHA	PTER 6	EXPERIMENTAL INVESTIGATION OF HEAT RESPONSE ON REINFORCED CONCRETE WATER TANK	
6.1	Introd Water	luction Tank Model	150 152
3,1	6.2.1 6.2.2 6.2.3	Materials Concrete Mix Design Water Tank Construction	152 155 155
6.3	Test N	Measurements	156
0.0	6.3.1	Climatic Environments	156 156
		6.3.1.2 Ambient Air Temperature	157 158 158
	6.3.2	Temperature Measurements	158
	6.3.3	Strains and Deformations Measurements	
		6.3.3.1 Strains	163 165

			Page
6.4		Test Results and Discussions of Reinforced Concrete Water emperatures	169
	6.4.1	Case of Covered Full Water Tank	170
		6.4.1.1 Study of East Wall 6.4.1.2 Study of South Wall 6.4.1.3 Study of West Wall 6.4.1.4 Study of North Wall 6.4.1.5 Study of Horizontal Base	170 172 174 175 177
	6.4.2	Case of Covered Empty Water Tank	178
		6.4.2.1 Study of East Wall	186 187 188 190 191
	6.4.3	Case of Uncovered Full Water Tank	200
		6.4.3.1 Study of East Wall	200 202
	6.4.4	Case of Uncovered Empty Water Tank	207 207 209
6.5		ison Between the Thermal Behaviour of Water Tank Cases in	214
	6.5.1 6.5.2 6.5.3	Surfaces Temperature Temperature Gradient Thermal Damping Factor	215 223 228
6.6		Test Results and Discussions of Reinforced Concrete Water emperatures	230
	6.6.1	Case of Covered Full Water Tank	230
		6.6.1.1 Study of East Wall	231 232 234 235
	6.6.2	Case of Covered Empty Water Tank	244
		6.6.2.1 Study of East Wall	244 246 247 248
	6.6.3	Case of Uncovered Full Water Tank	257 257

			Page
6.7		ison Between the Thermal Behaviour of Water Tank Cases in Surfaces Temperature	262 262
	6.7.2 6.7.3	Temperature Gradient	268 272
6.8		Test Results and Discussions of Reinforced Concrete Water hermal Strains and Deformations	274 274 275 283 291
6.9		Test Results and Discussions of Reinforced Concrete Water hermal Strains and Deformations	299
	6.9.1 6.9.2 6.9.3	Case of Covered Full Water Tank	299 299 310
СНА	PTER 7	PREDICTION OF TEMPERATURES AND THERMALLY INDUCED STRESSES OF WATER TANK WALLS	
7.1 7.2	Introd Case o 7.2.1 7.2.2 7.2.3	comparison Between Predicted and Measured Temperatures Predicted Thermally Induced Stresses	314 315 315 320
		Methods	328
		f Uncovered Full Water Tank in Summerf Covered Empty Water Tank in Summer	331 334
		f Covered Full Water Tank in Winter	338
	7.5.1 7.5.2	Comparison Between Predicted and Measured Temperatures Predicted Thermally Induced Stresses	338 344
		of Uncovered Full Water Tank in Winter	347 350
СНА	PTER 8	CONCLUSIONS AND RECOMMENDATION	355
APP		A) Computer Programme "SLAB" B) Thermal Damping Factor C) Computer Programme "WATER TANK"	363 366 367
REF	,	5	373

LIST OF TABLES

Table		Page
1.1	Typical Values of Thermal Conductivity of Concrete.	9
1.2	Influence of Aggregate Content on the Coefficient of Thermal Expansion.	17
1.3	Wind Speed at Cairo, Egypt.	25
1.4	Values of Emissivity and Absorptivity.	31
3.1	Coefficient of Thermal Conductivity and density from References.	51
3.2	Designation of Plain Concrete Mixes for Thermal Conductivity, Density and Compressive Strengh Tests.	53
3.3	Designation of Reinforced Concrete Mixes for Thermal Conductivity, Density and Compressive Strength Tests.	54
3.4	Properties of Local Portland Cement.	55
3.5	Grading of Coarse Aggregates.	56
3.6	Physical Properties of Coarse Aggregate.	57
3.7	Grading of Sand.	57
3.8	Physical Properties of Sand.	57
3.9	Thermal conductivity, Density and Compressive Strength Test Results of Plain Concrete Samples.	64
3.10	Thermal Conductivity, Density and Compressive Strength Test Results of Reinforced Concrete Samples.	65
3.11	Thermal Conductivity Measured and Calculated Values from the Proposed Equation For Different Cement Contents.	66
3.12	Thermal Conductivity Measured and Calculated Values from the Proposed Equation for Different Water-Cement Ratios.	72
3.13	Thermal Conductivity Measured and Calculated Values from the Proposed Equation for Different Percentages of Sand in Combined Aggregates.	75

Table		
3.14	Thermal Conductivity Values for Different Concrete Constituents.	Page 82
5.1	Slab Theoretical Predicted Temperatures.	122
5.2	Field Test Results on Plain Concrete Slab.	133
5.3	Predicted Thermally Induced Stresses for 10 cm Concrete Slab.	136 140
6.1	Temperature Response of Covered Full Water Tank (August 30, 1984).	179
6.2	Temperature Response of Covered Empty Water Tank (August 19, 1984).	193
6.3	Temperature Response of Uncovered Full Water Tank (August 28, 1984).	203
6.4	Temperature Response of Uncovered Empty Water Tank (August 22, 1984).	210
6.5	Maximum and Minimum Outside and Inside Surfaces and Air or Water Temperatures of Covered Full and Empty Water Tank.	219
6.6	Maximum and Minimum Outside and Inside Surfaces and Air or Water Temperatures of Uncovered Full and Empty Water Tank.	220
6.7	Temperature Response of Covered Full Water Tank (January 1st, 1985).	237
6.8	Temperature Response of Covered Empty Water Tank (December 25, 1984).	250
6.9	Temperature Response of Uncovered Full Water Tank (January 6, 1985).	259
6.10	Maximum and Minimum Outside and Inside Surfaces and Air or Water Temperatures of Covered Full and Empty and Uncovered Full Water Tank.	265
6.11	Relative Thermal Strains at Covered Full Water Tank Outside Walls (August 30, 1984).	276
6.12	Relative Thermal Deformations of Different Walls and Different Cases of Study in Summer.	277

Table		Page
6.13	Relative Thremal Strains at Covered Emtpy Water Tank Inside and Outside Walls (August 19, 1984).	284
6.14	Relative Thermal Strains at Uncovered Full Water Tank Outside Walls (August 28, 1984).	292
6.15	Relative Thermal Strains at Uncovered Empty Water Tank Inside and Outside Walls (August 22, 1984).	296
6.16	Relative Thermal Strains of Covered Full Water Tank Outside Walls (January, 1st, 1985).	300
6.17	Relative Thermal Deformations of Covered Full Water Tank Outside Walls (January 1st, 1985).	301
7.1	Comparison Between Thermally Induced Stresses Computed by Spring System analogy and Structural Basic Principles Methods.	329

LIST OF FIGURES

Figure		Page
1.1	Definition of Thermal Conductivity.	6
1.2	Variation of Conductivity With Density.	6
1.3	Variation of Thermal Conductivity With Density.	8
1.4	Correlation Between Bulk Density and Thermal Conductivity.	8
1.5	Thermal Conductivity of Concrete at Different Temperatures.	14
1.6	Volumetric Specific Heats of Normal Weight and Lightweight Concretes.	14
1.7	Influence of the Linear Coefficient of Thermal Expansion of Aggregate on the Coefficient of Thermal Expansion of Concrete.	18
1.8	Daily Amounts of Total Radiation, for Different Orientations and Horizontal Surface, Latitude 30° N. Solar Time, Cairo, Egypt(17).	21
1.9	Hourly Distribution of Air Temperature (Cairo, Egypt 30° N, Latitude).	24
1.10	Average Wind Speed for Each Month of the Year, Cairo.	27
1.11	Average Relative Humidity for Each Month of the Year, Cairo.	27
1.12	Vertical Distribution of Longitudinal Thermal Strain.	40
1.13	Influence of Thermal Load on Stress in Concrete Structures.	40
1.14	General Section Subjected to Increment Free Strain.	40
2.1	Schedule of Thermal Conductivity Experimental Work.	47
2.2	Schedule of Slabs Theoretical and Experimental Work.	48
2.3	Schedule of Water Tank Experimental and Theoretical Study.	49

Figure		Page
3.1	Gradiation Curves of Gravel, Crushed Limestone, Crushed Basalt and Sand.	58
3.2	Sketch of Steady State Thermal Conductivity Test Apparatus.	62
3.3	Steady State Thermal Conductivity Test Apparatus.	63
3.4	Relation Between Cement Content and Thermal Conductivity, Density and Compressive Strength.	67
3.5	Polynomial Relation Between Thermal Conductivity and Cement Content.	68
3.6	Relation Between Thermal Conductivity, Density Compressive Strength and Water/Cement Ratio by wt.	70
3.7	Exponential Relation Between Thermal Conductivity and Water-Cement Ratio by wt.	71
3.8	Relation Between Thermal Conductivity, Density, Compressive Strength and Sand-Gravel Ratio.	73
3.9	Polynomial Relation Between Thermal Conductivity and Percentage of Sand in Combined Aggregate.	74
3.10	Relation Between Thermal Conductivity, Density, Compressive Strength and Different Types of Coarse Aggregates in Concrete.	77
3.11	Relation Between Thermal Conductivity and Percentage of Reinforcement in Concrete Mixes.	78
3.12	Relation Between Density and Percentage of Reinforce- ment in Different Concrete Mixes.	79
3.13	Relation Between Thermal Conductivity and Water Cement Ratio for Different Cement Content and Sand- Gravel Ratio.	83
3.14	Relation Between Thermal Conductivity and 28 days Compressive Strength.	84
3.15	Relation Between Thermal Conductivity and Concrete Density.	86

Figure		Page
4.1	Heat Transfer Between Concrete Surface and Air on a Sunny Day.	91
4.2	The Space Time Grid.	102
4.3	A Typical Slab Cross Section Showing Nodal Points Numbering.	102
4.4	A Typical Water Tank Elevation and Cross Section Showing the Nodal Points in Each Wall.	108
4.5	Spring System Analogy to the Thermal Stress Calcula- tions.	123
4.6	One-Dimensional Model Showing the Method of Calcula- ting Temperature Forces.	123
4.7	Calculations of Fixed End Moments Due to Temperature Difference.	126
5.1	Flow Chart of "SLAB" Computer Programme.	131
5.2	Climatic Conditions Recorded on June 7th, 1983.	132
5.3	Sketch Showing Tested Slab and Positions of Thermo- couples.	135
5.4	Comparison Between Measured (M) and Predicted (P) Temperatures of Different Nodes of Plain Concrete Slab with Depth 10 cm.	138
5,5	Predicted Thermal Stresses Distribution in Plain Concrete Slab with Depth 10 cm.	141
5.6	Temperature Difference and Maximum Tensile and Compressive Stresses Through the Slab Depth.	142
5.7	Relation Between Slab Depth and Maximum Temperature and Time of its Occurance.	144
5.8	Relation Between Slab Depth and Maximum Tensile and Compressive Thermally Induced Stresses and its Time of Occurance.	146
5.9	Relation Between Percentage of Reinforcement, and Maximum Temperature and Thermally Induced Stresses in Reinforced Concrete Slabs.	148