

UNIT CONTROL ON THE PERFORMANCE OF THE EGYPTIAN UNIFIED POWER SYSTEM

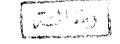
1 THESIS PRESENTED TO

-- FACULTY OF ENGINEERING | AIN SHAMS UNIVERSITY ..

BY ENG. BASSIONY M. EL-BARADIE

FOR THE PH.D. DEGREE IN ELECTRICAL ENGINEERING

SUPERVISED BY


PROF. Dr. Mohamed. A. Badr

ELECTRICAL POWER & MACHINES DEPT.

AIN SHAMS UNIVERSITY.

Dr. H. M. El-Shaer

DEPUTY CHAIRMAN

EGYPTIAN ELECTRICITY AUTHORITY

ÇAIRO 1985

ACKNOWLEDGMENT

The author wishes to acknowledge the help he received from Professors, Dr. E.A. Mansour, of the Electrical Power & Machines Department & Dr. M.A. Sheirah, of the Automatic Control and Computer Science Department, both of the Faculty of Engineering, Ain Shams University during the stage of formulating the problem of research.

He, also wishes to express his sincere thanks, his indebtedness and his unlimited gratitude to Prof. Dr. M.A.L. Badr & Dr. A.A. Metwally, Ain Shams University for their valuable guidance and fruitfull discussions which resulted in the accomplishment of the thesis in the final form.

Thanks are also due to Dr. Hamdy El-Shaer, Deputy Chairman of Operation E.E.A. for his valuable comments and helpful criticism.

Appreciation is extended to Eng. A. Amin, E.E.A. Technical Consultant, Dr. Mohsen Ibrahim, Mr. Helmi Tolba and Eng. Ayman El Baradie for their valuable assistance and encouragement.

Finally, the author wishes to thank his wife, his daughter, and his sons for their help and the convenient atmosphere they created auring this work.

EXAHINERS

- 1. Prof. Dr. M. Ahmed El Arabaty
 Head of Electrical Power & Machines Dept.
 Faculty of Engineering,
 Ain Shams University,
 Cairo Egypt.
- 2. Dr. E.R. Lybrand Manager of Power Systems R & D Moore Systems Inc. San Jose, California, U.S.A.
- 3. Prof. Dr. M.A.L. Badr
 Electrical Power & Machines Dept.
 Faculty of Engineering,
 Ain Shams University,
 Cairo Egypt.
- 4. Dr. H.M. El-Shaer

 Deputy Chairman

 Egyptian Electricity Authority

 Cairo Egypt.

ABSTRACT

The objective of this thesis is to determine the best type of control to be applied to the generating units of the Egyptian Unified Power System in order to keep the network frequency within allowable limits.

Four different types of generating units (large steam, small steam, gas and hydro) are found in the Egyptian Power System. Each of these types is modeled mathematically and used individually for studying the performance of each of four types of control strategies. The control strategies considered are the proportional plus integral, optimal, suboptimal, and self tuning regulators.

Studies are performed to determine the performance of each of the four control schemes when applied to each of the four generator types. In order to facilitate the comparison between the different control schemes, the same load disturbance pattern was used in all tests and performance indices were measured in each case.

The effect of including boiler dynamics in the steam units models is also studied.

After the best controller for each unit type was determined, the different generator models were integrated to form a model for the whole system and the system's response to load disturbance is studied.

CONTENTS

		Page
List of Figures .		7
List of Tables .	• • • • • • • • • • • • • • • • • • • •	12
INTRODUCTION.		1.4
CHAPTER 1 DEVELOP	MENT OF POWER PLANTS MODELS.	24
1.1 General		24
1.2 The spec	ed control system	25
1.2.1 G	eneral model for speed control	
	ne speed control model for large	25
	team units	
	ne speed control model for small	25
te	Seam units	28
1.2.4 Th	ne speed control model for gas	
ur	its	28
1.2.5 Th	e speed control model for hydro	
un	its	28
1.3 The turb	ine models	30
1.3.1 In	troduction	30
1.3.2 La	rge steam turbine model	
(R	eheat type)	31
1.3.3 Sma	all steam turbine model	
(No	onreheat type)	32

		Pag
	1.3.4 Gas turbine model	32
	1.3.5 Hydro turbine model	34
	1.3.6 Selected Hydro-Turbine Model for	7+
	computer programming	34
1.4		35
1.5		36
1.6		J0
	processing	37
	1.6.1 Area control error	37
	1.6.2 Time error	38
	1.6.3 Time error correction	<u> 3</u> පි
	1.6.4 Processing of area control error .	
1.7		39
1.8	The complete developed model for each	41
	power plant	
		43
CHAPTER 2	THE PROPORTIONAL PLUS INTEGRAL CONTROLLER	47
2.1	General	47
2.2	Proportional control	48
2.3	The integral control	48
2.4	The proportional plus integral control	49
2.5	Application of (P + I) controller to the	77
	different power plants	52
	2.5.1 Application of the (P+I) controller) <u>L</u>
	to the large steam power plant	53

- j -

		Page
	2.5.2 Application of the (P+I)	
	controller to the small steam	
	power plants	59
	2.5.3 Application of the (P+I) controller	
	to the gas power plants	66
	2.5.4 Application of the (P+I) controller	
	to the hydro units	73
CHAPTER 3	MODELLING OF BOILERS IN STEAM POWER	80
	PLANTS.	
3.1	Introduction	50
3.2	Model description	61
3.3		
	when the boiler dynamics are included	8 5
3.4	Investigation of the small steam units	
	when the boiler dynamics are included	88
CHAPTER 4	THE OPTIMUM CONTROLLER.	91
4.1	Introduction	91
4.2	Problem statement	92
	4.2.1 System state X.	93
	4.2.2 Optimal controller U	94
4.3	System specifications	95
4 • 4	Solution procedure	99
4.5	Results	100

		Page
4.6	kesults for the large steam units	10
	4.6.1 Equal weighting factors (Q_{11} & Q_{22})	10]
	4.6.1.1 The optimum controller	
	response	10]
	4.6.1.2 The suboptimum controller	
	response	106
	4.6.1.3 The advantages of the	
	suboptimum controller	110
	4.6.2 The weighting factors ($Q_{11} & Q_{22}$)	
	are not the same	110
	4.6.3 Results for the small steam units .	116
	4.6.4 Results for the gas units	124
	4.6.5 Results for the hydro units	124
CHAPTER 5	THE SELF TUNING REGULATOR.	
		141
	Introduction	141
5.2	Self-tuning regulator for load frequency	
	control of power systems	143
	5.2.1 General	143
	5.2.2 Problem formulation	145
5.3		152
5.4	Results	154

		Page
CHAPTER 6	COMPARATIVE STUDY.	159
6.1	General	159
6.2	Advantages and disadvantages of the	
	different types of controllers	159
	6.2.1 The (P+I) controller	159
	6.2.2 The optimum controller	160
	6.2.3 The self-tuning regulator	161
6.3	Factors affecting good control	162
6.4	Application of the different types of	
	controllers	163
	6.4.1 Comparative Study for large steam	
	unit controllers	163
	6.4.2 Comparative study for small steam	
	unit controllers	167
	6.4.3 Comparative study for gas unit	
	controllers	167
	6.4.4 Comparative study for the hydro	
	unit controllers	167
CHAPTER 7	INTERCONNECTION OF THE POWER PLANTS IN	
	EGYPT.	174
7.1	General	174
7.2	The average system frequency model	175
7.3	Egypt's interconnected power system	176
7.4	Simulation results	179
7.5	Adaptation to the proposed control strategy	• •
	to the Egyptian unified grid in operation.	180

- : -

	Page
CHAPTER 8 MAIN CONCLUSIONS AND RECOMMENDATIONS.	186
8.1 Conclusions	186
8.2 Suggestions for further studies	189
REFERENCES	192
APPENDIX A Egypt's Power System	205
APPENDIX B The Mathematical Model for Large Steam	
Units	209
APPENDIX C The Mathematical Model for the Boiler	216
APPENDIX D State Variable Representation of Power	
Units	221
APPENDIX E The Self Tuning Regulator	234
APPENDIX F The Tie Line Power Model	0.4.0

- 7 -

LIST OF FIGURES

		Page
1.1	General Model.	26
1.2	Large Steam Unit Governor Model.	27
1.3	Small Steam Unit Governor Model.	27
1.4	The General Model For Hydro Unit Governor.	
1.5	The Approximate Model For Hydro-Unit Governor.	27
1.6	The Simplified Governor Model For the Hydro	29
	Unit.	0.0
1.7	Steam Turbine (Large Units).	29
1.8	Steam Turbine (Small Units).	29
1.9	Gas Turbine Model.	33
1.10	Hydro Turbine Model.	33
1.11	Thermal to Hydro-Turbine Transformation.	33
1.12	Load Change Pattern.	33
1.13	Area Average Frequency.	33
1.14	The L.P. Smoothing Filter.	40
1.15		40
1.16	The Developed Model For Large Steam Unit.	44
1.17	The Developed Model For Small Steam Unit.	45
2.1	The Developed Model For Hydro Units.	46
2.2	(P+I) Controller.	50
4.4	Large Steam Units (Proportional Control	
9 9	PF = 0.5, 0.8).	54
د.>	Large Steam Units (Proportional Control	
	PF = 1.0, 1.5).	55

- 5 -

		Page
2.4	Large Steam Units (Integral Control	460
	A = 0.5, 1.0).	5 .0
2.5	Large Steam Units (P + I Control).	56
2.6	Small Steam Units (Proportional Control	5 7
	PF = 0.4, 0.8).	<i>C</i> 2
2.7	Small Steam Units (Proportional Control	60
	PF = 1.0, 1.4).	(3
2.8	Small Steam Units (Integral Control	61
	A = 0.4, 0.6).	<i>(</i>
2.9	Small Steam Units (P + I Control).	62
2.10	Small Steam Units (P + I Control).	63
2.11	Gas Units (Proportional Control PF = 0.4, 0.8).	64
2.12	Gas Units (Proportional Control PF = 1, 1.4).	67
2.13	Gas Units (Integral Control A = 0.4, 0.6).	5b
2.14	Gas Units (P + I Control).	69
2.15	Gas Units (P + I Control).	70
2.16	Hydro Units (Proportional Control PF = 0.5,	71
	0.7, 1.0).	
2.17	Hydro Units (Integral Control A = 0.2, 0.3).	74
2.18	Hydro Units (P + I Control).	75
2.19	Hydro Units (P + I Control).	76
2.20	Hydro Units (P + I Control).	77
3.1	Block Diagram For Boiler Model.	78
3.2		82
. –	Block Diagram of Steam Tulting & Boiler Respresentation.	
		83

		Page
3.3	Large Steam Units (Boiler is not Included).	86
3.4	Large Steam Units (Boiler is Included).	87
3.5	Small Steam Units (Boiler is not Included).	89
3.6	Small Steam Units (Boiler is Included).	90
4.1	Implementation of the Optimal Linear	
	Regulator.	96
4.2	Large Steam Units (Optimum Control)	
	The Weighting Factors Are the Same.	103
4.3	Large Steam Units (Optimum Control)	_
	The Weighting Factors Are the Same.	104
4.4	Large Steam Units (Suboptimum Control)	·
	The Weighting Factors Are the Same.	107
4.5	Large Steam Units (Suboptimum Control)	·
	The Weighting Factors Are The Same.	108
4.6	Large Steam Units (Optimum Control)	
	The Weighting Factors Are Not the Same.	112
4.7	Large Steam Units (Suboptimum Control).	
	The Weighting Factors Are Not the Same.	114
4.8	Small Steam Units (Optimum Control	•
	1 x Q 3 x Q).	118
4.9	Small Steam Units (Optimum Control	
	4 x Q — 10 x Q).	119
4.10	Small Steam Units (Suboptimum Control	
	1 x Q 3 x Q).	121