A STUDY OF FIBRONECTIN IN MALNOURISHED CHILDREN.

Thesis Submitted for Partial Fullfilment of M.S. Degree in Pediatrics

By

Naglaa Hedayat Helmy.

Supervisors

Prof. Dr. MAHMOUD ESSAWY

Professor of Pediatrics Ain Shams University

Dr. MAGDA KHAZBAK

Lecturer of Pediatrics Ain Shams University

Dr. SALWA ABUELHANA

Lecturer of Clinical Pathology Ain Shams University

Ain Shams University
Faculty of Medicine
1988

المنعان العالم المالك المنافقة

صَدَق لله العظيم سعة العود رالآبة من

TO MY MOTHER

and

MY HUSBAND

ACKNOWLEDGEMENT

I am greatly honoured to express my sincere appreciation to my **Professor Dr. Mahmoud Essawy.** Professor of Pediatrics, Faculty of Medicine. Ain Shams University for his constructive remarks and valuable directions, I shall always be proud to have worked under his supervision.

I do feel greatly indebted to **Dr. Magda Khazbak**Lecturer of Pediatrics, Faculty of Medicine, Ain Shams
University for her indispensible guidance, continuous help
and encouragement.

My deep appreciation to **Dr. Salwa Abou El**Hana Lecturer of Clinical pathology, Faculty of Medicine,
Ain Shams University for her support, generous help and
encouragement.

CONTENTS

		<u>Page</u>
*		
-	List of abbreviations	i
*	List of figures	ii
*	List of tables and Graphs	iii
*	Introduction	1
*	Aim of the work	2
*	Review of Literature	3
*	Fibronectin	3
*	Biological functions of fibronectin	30
k	Fibronectin in diseases	46
	Fibronectin in protein energy malnutrition status (PEM)	56
ŧ	Materials & Methods	63
t	Results	6 8
t	Discussion	79
ŀ	Summary and conclusion	83
•	References	85
ŀ	Ambie Summan	

LIST OF ABBREVIATIONS

S. aureus : Staphylococcus aureus.

LETS: Large external transformation sensitive protein.

SF-antigen: Soluble fibroblast antigen

CSP : Cell surface protein.

CAF : Cell adhesion factor

CIg : Cold insoluble globulin

PCA : Pyrrolidone carboxylic acid

HEP : Heparin

SH : Sulfhydryl groups

CHO : Carbohydrate groups

XL : Cross linking

S-S : Disulfide bridging

FGF : Fibroblasts growth factor

RES : Reticulo-endothelial system

RDS : Respiratory distress syndrome

BMRTC: Bone metastasising renal tumour of childhood.

PEM : Protein energy malnutrition

TPN : Total parenteral nutrition

PCM : Protein calorie malnutrition

m : Months

F : Female

M : Male

IgG : Immunoglobulir. G

L.C. partigen: Low concentration partigen

LEST OF FIGURES

			Pag e
Fig. 1	:	Structural model of plasma Fibronectin	7
Fig. 2	:	A model of a fibronectin subunit	19
Fig. 3	•	Relationship of cellular fibronectin to several biological activities	31
Fig. 4	2	Diagram of events that probably take place after blood clotting	39
Fig. 5	:	LC-partigen-fibronectin immunodiffusion plate	6 5

- iii -

LIST OF TABLES AND GRAPHS

			P ag e
Table 1	:	Clinical data of group I	69
Table 2	:	Clinical data of group II	70
Table 3	:	Clinical data of group III	71
Table 4	:	Serum albumin and plasma fibronectin of group I	72
Table 5	:	Plasma fibronectin concentration of group II before and after treatment	73
T abl e 6	:	Plasma fibronectin concentration of group III	74
Table 7	:	Comparison of the 3 groups as regards plasma fibronectin levels	75
Graph I	:	Fibronectin concentration of the 3 groups	76
Graph II	:	Fibronectin concentration of group II before and after treatment	77
G ra ph Ⅲ	:	Comparisor, between fibronectin and	78

INTRODUCTION

INTRODUCTION

Plasma proteins can serve as indicators of nutritional status e.g. Albumin and transferrin, more recently retinal binding protein and thyroxin binding pre-albumin have been considered as markers for subclinical protein calorie malnutrition.

A characteristic of these proteins is that their half lives time during which radioactivity or other property of subst. falls to half its original value are less than 2 days. Fibronectin falls within this group with its recent characterization and half life estimation of 15-20 h.

Studies have shown that even with minimal starvation. plasma fibronectin levels drop rapidly and then with refeeding particularly on a CHO rich diet the levels are rapidly restored. [Yoder et al., (1983)].

AIM OF WORK

AIM OF THE WORK

The aim of this work was to assess the value of measuring the fibronectin levels in plasma of malnourished infants and to compare it with normal infants of the same age group and see the effect of refeeding to evaluate it as a new nutritional parameter and compare it with serum albumin.

REVIEW OF LITERATURE

REVIEW OF LITERATURE

FIBRONECTIN

HISTORICAL PERSPECTIVE:

The term fibronectin describes a family of structurally and immunologically related high molecular weight glycoproteins that are present throughout the body [Mosesson & Amrani, 1980].

Prior to the suggestion of the name fibronectin [Kuusela et al., 1976] the protein in its various forms had been designated by a variety of terms. including: Large external transformation sensitive protein (LETS) [Hynes & Bye, 1974], soluble fibroblast antigen (SF-antigen) [Ruoslahti & Vaheri, 1974], cell surface protein (CSP) [Yamada & Weston, 1974], cell adhesion factor (CAF) [Pearlstein, 1976], galactoprotein a [Gahmberg et al., 1974] and Z [Blumberg & Robbins, 1975] cold insoluble globulin (CIg) [Chen & Mosesson, 1976] [Morrison et al., 1948], opsonic protein. [Saba, 1970] cell spreading factor [Grinnell, 1976] and anti-gelatin factor [Wolff et al., 1967].

At present, there appears to be widespread recognition of the need for a single general designation for all forms of the protein as well as general acceptance of the term Fibronectin [Mosesson & Amrani, 1980].

Two forms of fibronectin have been characterized: a soluble form in blood and other body fluids and another insoluble form is present on the surface of cells, in extracellular spaces of connective tissue and as a component of basement membrane [Mosesson & Amrani, 1980]and [Ruoslahti et al., 1981].