COAGULATION DEFECTS IN ACUTE LEUKEMIA

Thesis By

FADIA FOUAD MAHMOUD

Submitted in Fulfilment of Ph.D. Degree in Bio-Chemistry

Supervised by

Prof. Dr. ABDEL MONIM ALGOHARY
Professor of Biochemistry, Faculty of Science
Ain Shams University.

Prof. Dr. SALAH El-DINE ZAKI EID Professor of Biochemistry, Faculty of Medicine, Ain Shams University. pla

Prof. Dr. AHMED SAMY KHALIFA

Professor of Pediatrics, Faculty of Medicine

Ain Shams University.

£. F.

Doctor MAHMOUD ISMAIL HASSAN Lecturer of Biochemistry, Faculty of Medicine, Ain Shams University.

r) 0/2

AIN SHAMS UNIVERSITY 1990

ACKNOWLEDGEMENT

The auther wishes to express her deepest gratitude to Prof.

Dr. ABDEL MONEIM ALGOHARY for his guidance, continuous encouragement, help and advice throughout the whole work.

Appreciation and obligation are expressed to Prof. Dr. SALAH EL-DIN ZAKI EID forgrating me the privilage of working under his supervision and for his valuable advice.

I'am greatly indebted to Prof. Dr. AHMED SAMY KHALIFA for his continuous supervision, interest and guidance.

I owe a great deal of thanks to Dr. MAHMOUD ISMAEL for his gentle and remarkable guidance and his help in the practical part of this work. I'am also indebted to Prof. Dr. NAZLY GAD EL-MAWLA of Medical Oncology, National Cancer Institute for providing diagnosed patients prior to and after treatment.

Contents

- introduction and Aim of The Work
* Review of Literature
Mechanism of Hemostasis
A. Vascular Function
B. Platelets
C. Coagulation
+ The intrinsic coagulation cascade 14
+ The extrinsic coagulation cascade
+ The common pathway
+ The protein C-thrombomodulin mechanism 35
+ Formation of the fibrin clot
The Fibrinolytic Mechanism
Limiting Reaction
+ Antithrembin III
÷ Antiplasmin
+ چ-Macroglobulin
+ New Protease Inhibitors
Primary Fibrinolysis
Disseminated Intravascular Coagulation
+ Pathophysiology
+ Laboratory abnormality
Acute Leukemia
+ Etiology
+ Epidemiology
+ Classification

	16	
	-Morphologic classification	
	-Cytochemical classification	102
	-Biochemical classification	104
	-Immunological classification	107
	+ Cytogenetics	
	+ Clinical Manifestation	
	+ Prognostic Factors	
	+ Bleeding Manifestation	
×	Material and Methods	127
	Results	
	Discussion	
	Summary	230
^	References	

Abbreviations

Diagnostic groups:

C = Control

ALL = Acute lymphoblastic leukemia

ANLL = Acute nonlymphoblastic leukemia

APL = Acute promyelocytic leukemia

Suffixes:

B= before treatment

A= after treatment

M= in complete remission under maintenance therapy

R= in relapse

Coagulation factors:

FII = factor II

FV = factor V

FVIII:C= factor VIII:C

PC = protein C

ATIII = antithrombin III

FDP = fibrinogen degradation products

Fibr = fibrinogen

Liver parameters:

alb = albumin

GPT = glutamic pyruvate transaminase

BD = bilirubin direct

BI = bilirubin indirect

BT = bilirubin total

List of Tables

Table	1;	: Components of The Hemostatic Mechanism	13
Table	2:	: Cytological features according to FAB classifica-	
		tion of ALL	100
Table	3:	Classification of ANLL	101
Table	4:	Frequency of pretreatment hematological features	
		in ALL patients	161
Table	5:	Frequency of pretreatment hematological features	101
		in ANLL patients	162
Table	6:	Epidemiological and laboratory findings in	102
		untreated ALL patients	163
Table '	7:	Epidemiological and laboratory findings in	105
		untreated ANLL patients	164
Table 8	B:	Plasma factor II in acute leukemia patients	104
		expressed in percent of normal	165
Table 9	∂:	Plasma factor V in acute leukemia patients	103
		expressed in percent of normal	• • •
Table 10):	Plasma factor VIII:C in acute leukemia patients	166
		expressed in percent of normal	
Table 11	:	Plasma protein C in acute leukemia patients	167
Table 12			168
1010 12		Plasma AT III in acute leukemia patients	
Table 10			169
rante 13		Serum FDP in acute leukemia patients expressed	
		in ug/ml	70

Table	14:	Plasma fibrinogen in acute eleukemia patients	
		expressed in mg/dl	171
Table	15:	Serum albumin in acute leukemia patients	
		expressed in g/dl	172
Table	16:	SGPT in acute leukemia patients expressed in	
		U/ml	173
Table	17:	Direct serum bilirubin in acute leukemia patients	
		expressed in mg/dl	174
Table	18:	Indirect serum bilirubin in acute leukemia	
		patients expressed in mg/dl	175
Table	19:	Total serum bilirubin in acute leukemia patients	
		expressed in mg/dl	176
Table	20:	Coagulation factors and inhibitors in acute	
		leukemia patients. Differences between groups	177
Table	21:	Liver parameters in acute leukemia patients.	
		Differences between groups	178
Table	22:	Coagulation factors in acute leukemia.	
		Correlation study	179
Table	23:	Liver parameters in acute leukemia patients.	
			100

List of Figures

Figure	1:	The consequence of Factor XII activation 15
Figure	2:	The activation of Factor IX
Figure	3:	Structural features of human factor VIII:C 22
Figure	4:	Y-carboxyglutamic acid moities 28
Figure	5:	The common pathway of thrombin generation 29
Figure	6:	The activation of Factor V 30
Figure	7:	Protein C-thrombomodulin mechanism 36
Figure	8:	The structures of fibrinogen and the fibrin clot . 42
Figure	9:	The formation of the crosslinked fibrin clot 45
Figure	10:	The structure of plasminogen and its mechanism
		of action
Figure	11:	Degradation of fibrinogen 53
Figure	12:	The mechanism of heparin action 62
Figute	13:	The site of action of antithrombin and heparin
		within the coagulation cascade 64
Figure	14:	Plasma factor II in acute leukemia patients 181
Figure	15:	Plasma factor V in acute leukemia patients 182
Figure	16:	Plasma factor VIII:C in acute leukemia patients . 183
Figure	17:	Plasma protein C in acute leukemia patients 184
Figure	18:	Plasma antithrombin III in acute leukemia patients 185
Figure	19:	Serum FDP in acute leukemia patients 186
Figure	20:	Plasma fibrinogen in acute leukemia patients 187
Figure	21:	serum albumin in acute leukemia patients 188
Figure	22:	SGPT in acute leukemia patients
Figure	23:	Direct serum bilirubin in acute leukemia patients 190

Figure	24:	I	ndirect serum bilirubin in acute leukemia
		F	atients
Figure	25:		otal serum bilirubin in acute leukemia patients 192
Figure	26:	+	Frequency distribution of F II in acute
			leukemia patients
		+	Frequency distribution of F V in acute
			leukemia patients 193
Figure	27:	+	Frequency distribution of F VIII:C in acute
			leukemia patients
		+	Frequency distribution of PC in acute
			leukemia patients 194
Figure	28:	+	Frequency distribution of AT III in acute
			leukemia patients
		+	Frequency distribution of FDP in acute
			leukemia patients 195
Figure	29:	+	Frequency distribution of fibr in acute
			leukemia patients
		+	Frequency distribution of alb in acute
			leukemia patients 196
Figure	30:	+	Frequency distribution of SGPT in acute
			leukemia patients
		+	Frequency distribution of DSB in acute
			leukemia patients 197
Figure	31:	÷	Frequency distribution of ISB in acute
			leukemia patients
		+	Frequency distribution of TSB in acute
			leukemia patients

Figure 32: + Correlation between fibr and F II in ALL before
treatment
+ Correlation between F V and PC in ALL before
treatment
Figure 33: + Correlation between F V and AT III in ALL
(maintenece)
+ Correlation between F V and fibr in ALL
(maintenence)
Figure 34: + Correlation between PC and AT III in ALL
(maintenence)
+ Correlation between PC and fibr in ALL
(maintenence)
Figure 35: + Correlation between AT III and fibr in ALL
(maintenence)
+ Correlation between PC and F II In ANLL before
Figure 36: + Correlation between Day 1 - 7 - 7
Figure 36: + Correlation between PC and F V in ANLL before
treatment
+ Correlation between PC and AT III in ANLL before
treatment
Figure 37: + Correlation between fibr and FDP in ANLL before
treatment
+ correlation between FDP and bleeding in ANLL before
treatment
Figure 38: + Correlation between F II and DSB in ALL before
treatment

+ Correlation between FDP and TSB in ALL before
treatment
Figure 39: + Correlation between fibr and TSB in ALL before
treatment
+ Correlation between alb and SGPT in ALL before
treatment
Figure 40: + Correlation between alb and SGPT in ALL before
treatment
+ Correlation between F II and alb in ALL
(maintenence) 207
Figure 41: + Correlation between FDP and SGPT in ALL
(maintenence)
+ Correlation between AT III and alb in ANLL before
treatment
Figute 42: + Platelet count versus bleeding tendency in ALL
patients
+ Platelet count versus bleeding tendency in ANLL
patients
Figure 43: + Bleeding tendency versus cytological subtype
in ALL patients
+ Bleeding tendency versus cytological subtype
in ANLL patients 210
Figure 44: + FDP versus bleeding tendency in ALL patients
+ FDP versus bleeding tendency in ANLL patients . 211
Figure 45: + FDP versus cytological subtype in ALL patients
+ FDP versus cytological subtype in ANLL patients 212

Figure	46:	+	Frequency distribution of platelets in	
			bleeding and non-bleeding ALL patients	
		+	Frequency distribution of PC in bleeding	
			and non-bleeding ALL patients	213
Figure	47:	+	Frequency distribution of fibrinogen in	
			bleeding and non-bleeding ALL patients	
		+	Frequency distribution of FDP in bleeding	
			and non-bleeding ALL patients	214

INTRODUCTION
AND
AIM OF THE WORK

Introduction And Aim Of The Work

Haemorrhage is a common and often catastrophic complication of acute leukemia. In a great majority of patients, bleeding is due to thrombocytopenia resulting from bone marrow replacement by leukemic cells (Bick and Wilson, 1984). However, in some patients with acute leukemia severe coagulation defects may occur (Amer et al, 1988; Joseph and Hebert, 1969; Kreis et al, 1984). Khalifa and co-workers reported prolonged TT in ALL and prolonged PTT as well as TT in ANLL patients at diagnosis (Khalifa et al, 1986).

Defective or decreased synthesis of clotting factors in the prothrombin complex may be a common problem in acute leukemia related to leukemic cell infiltration in the liver. In addition, impaired synthesis of other, non-vitamin K dependant factors may occur (Lisiewicz, 1978; Bick, 1980).

The hepatocytes also synthesise proteins with anticoagulant action. The two most important are protein C and antithrombin III. The former is a vitamin K-dependant plasma glycoprotein, which is activated by thrombin and the endothelial cell cofactor thrombomodulin (Keisel, 1979; Esmon and Owen, 1981). Its anticoagulant properties include a selective inactivation of factors V_a and $VIII_a$ (Walker et al, 1979; Marler et al, 1981) as