A STUDY ON THE EFFECT OF THE STRUCTURAL-TECTONIC INFERENCES OF THE ABU GHARADIG BASIN ON THE SUBSURFACE-HYDROCARBON IMPLICATION, WESTERN DESERT, EGYPT

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE

MASTER OF SCIENCE

IN

GEOLOGY

351.8 M G

 $\mathbb{B} \mathbb{Y}$

MOHAMED ABDEL-AZIZ MANSOUR

B.SC FACULTY OF SCIENCE AIN-SHAMS UNIVERSITY

43600

CAIRO 1992

NOTE

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfillment for the requirements of Master of Science in Geology.

Besides the research work materialized in the thesis the author attended ten post graduate courses for one academic year in the following:

- 1- Laboratory Technique
- 2- Structure Geology
- 3- Geo-tectonic
- 4- Field Mapping
- 5- Sedimentary Rock
- 6- Sedimentation
- 7- Data Processing
- 8- Data Filtering
- 9- Petrophysics
- 10- Well Logging

He has successfully passed the final examination of these courses, beside, the English language course.

Prof. Dr. M.Y. MENEISY

Head of Geology Department,

Faculty of Science.

Ain Shams University.

LIST OF CONTENTS

SUBJECT	PAGE
- List of Contents	I - III
- List of Figures	IV- VIII
- Achnowledgements	lX
- Abstract	IX- X
CHAPTER I: GENERAL GEOLOGIC SETTING	I - 03
I-1. INTRODUCTION	I
I-2. GEOMORPHOLOGY	I
I-3. SURFACE GEOLOGY	4
I-4. SUBSURFACE GEOLOGY	6
I-5. STRUCTURE	I 9
I-6. TECTONICS	33
I-7. GEOLOGIC HISTORY	35
I-8. PREVIOUS EXPLORATION	36
I-9. SCOPE OF PRESENT WORK	37
CHAPTER II: SUBSURFACE GEOLOGIC EVALUATION	39- 73
II-1. INTRODUCTION	39
II-2. THICKNESS VARIATION	39
II-3. LITHOFACIES ANALYSIS	49
II-4. DEPOSITIONAL ENVIRONMENTS.	67
CHAPTER III: STRUCTURAL FEATURES	72- 84
III-1. INTRODUCTION	72
III-2. STRUCTURAL INTERPRETATION	73
2-1. Structural Maps	73
A. Abu Roash Structural Elements	73
B. Khoman Structural Elements	76
III-3. GEO-SEISMIC SECTIONS	78

SUBJECT				PAGE
III-4.	STRUC	TURAL-	STRATIGRAPHIC EVOLUTION	83
CHAPTER	IV: S	TRATIG	RAPHIC SEQUENCE ANALYSIS	3 7- IIO
	IV-1.	INTRO	DUCTION	37
	IV-2.	SOURC	E ROCKS	33
		2-A.	Quality of Organic Matter	38
		2-В.	Quantity of Organic Matter	39
			1. Total Organic Content "ORG"	90
			2. Total Organic Carbon "TOC"	91
	IV-3.	RESER	VOIR ROCKS	99
	IV-4.	CAP R	OCKS	109
CHAPTER	V: TR	ANSFOR	MATION CYCLE	III - I59
	V-1.	INTRO	DUCTION	III
	V-2.	HYDRO	CARBON GENERATION	112
		2-1.	Burial History	1 L 3
			A. Burial Depth Analysis	II3
			B. Oil Window	I30
		2-1.	Geothermal Maturation	I30
			A. Geothermal Effect	131
			B. Time-Temperature	I3I
			C. Vitrinite Reflectance (Ro)	199
			D. Maturation Indeces and	140
			Hydrocarbon Product	
		2-3.	Time of Generation	140
			A. Onset Generation	145
			B. Peak Generation	I 4 5
			C. End Generation	I5I
	V-3.	HYDRO	CARBON MIGRATION	I5I

SUBJECT	PAGE
V-4. HYDROCARBON ACCUMULATION	158-166
CHAPTER VI: ENTRAPMENT STYLE	I60 - I66
VI-1. INTRODUCTION	I60 .
VI-2. STRATIGRAPHIC TRAPS	161
VI-3. STRUCTURAL TRAPS	I62
VI-4. COMBINED TRAPS	I 62
VI-5. HYDROCARBON PRESERVATION	163
CHAPTER VII: TECTONIC INFERENCES	I67 - I72
VII-1. INTRODUCTION	I6 7
VII-2. PALEO-TECTONIC PROFILES	168
VII-3. PALEO-TECTONIC MAPS	178
A- At the End of Bahariya Formation	178
B- At the End of Abu Roash Formation	180
C- At the End of Khoman Formation	I82
D- At the End of Gindi Formation	I8 4
E- At the End of Dabaa & Moghra Formatio	ons I86
VII-4. TECTONIC HISTORY	I36
A- Paleozoic	I 36
B- Mesozoic	I89
a- Albian-Cenomanian b-Turonian-Senoni	an 139
c- Companian-Maestrichtian	I39
C- Tertiary	I90
a- Early-Middle Eocene	191
b-Late Eocene-Oliogocene c-Miocene-Red	ent 192
SUMMARY & CONCLUSION	I93 - I96
REFERENCES	I9 7- 209
ARABIC SUMMARY	

LIST OF FIGURES

FIG.	No. SUBJECT	PAGE
1	LOCATION MAP OF THE STUDY AREA	2
2	GEOMORPHOLOGICAL MAP	3
3	SURFACE GEOLOGICAL MAP	5
4	GENERALIZED STRATIGRAPHY OF THE NORTH WESTERN	7
	DESERT	
5	LITHOLOGIC COMPOSITE WELL LOG OF GP.AA-3	20
6	LITHOLOGIC COMPOSITE WELL LOG OF GP.Y-1	21
7	LITHOLOGIC COMPOSITE WELL LOG OF GP.Y-5	22
8	LITHOLOGIC COMPOSITE WELL LOG OF GP.T-4	23
9	LITHOLOGIC COMPOSITE WELL LOG OF GP.T-13	24
10	LITHOLOGIC COMPOSITE WELL LOG OF GP.J-1	25
11	LIGHOLOGIC COMPOSITE WELL LOG OF GP.JJ-1	26
12	LITHOLOGIC COMPOSITE WELL LOG OF BRE-23-1	27
13	LIGHOLOGIC COMPOSITE WELL LOG OF AG-1	28
14	LITHOLOGIC COMPOSITE WELL LOG BED-1-2	29
15	LITHOLOGIC COMPOSITE WELL LOG OF WD7-1	30
16	ISOPACH MAP OF SHALTUT FORMATION	40
17	ISOPACH MAP OF ALAMEIN FORMATION	43
18	ISOPACH MAP OF KHARITA FORMATION	44
19	ISOPACH MAP OF BAHARIYA FORMATION	46
20	ISOPACH MAP OF ABU ROASH FORMATION	47
21	ISOPACH MAP OF KHOMAN FORMATION	‡ 3
22	SAND PERCENTAGE MAP OF SHALTUT FORMATION	51
23	SHALE PERCENTAGE MAP OF SHALTUT FORMATION	52
24	LIMESTONE PERCENTAGE MAP OF SHALTUT FORMATION	53
25	SHALE PERCENTAGE MAP OF ALAMEIN FORMATION	5. 5.

FIG.	No. SUBJECT	PAGE
26	LIMESTONE PERCENTAGE MAP OF ALAMEIN FORMATION	56
27	SAND PERCENTAGE MAP OF KHARITA FORMATION	57
28	SHALE PERCENTAGE MAP OF KHARITA FORMATION	58
29	LIMESTONE PERCENTAGE MAP OF KHARITA FORMATION	59
30	SAND PERCENTAGE MAP OF BAHARIYA FORMATION	6 I
31	SHALE PERCENTAGE MAP OF BAHARIYA FORMATION	62
32	LIMESTONE PERCENTAGE MAP OF BAHARIYA FORMATION	63
33	SAND PERCENTAGE MAP OF ABU ROASH FORMATION	64
34	SHALE PERCENTAGE MAP OF ABU ROASH FORMATION	65
35	LIMESTONE PERCENTAGE MAP OF ABU ROASH FORMATION	6 6
36	SHALE PERCENTAGE MAP OF KHOMAN FORMATION	68
37	LIMESTONE PERCENTAGE MAP OF KHOMAN FORMATION	69
38	ISOCHRONOUS REFLECTION MAP CAPPING THE	74
	ABU ROASH "D" MEMBER (AFTER HELAL 1990)	
39	ISOCHRONOUS REFLECTION MAP CAPPING THE KHOMAN	7 7
	FORMATION (AFTER HELAL 1990)	
40	GEOSEISMIC SECTION OF SEISMIC LINE GP.80-24	79
41	GEOSEISMIC SECTION OF SEISMIC LINE GP.80-30	aı
42	GEOSEISMIC SECTION OF SEISMIC LINE GP.80-9	32
43	GEOSEISMIC SECTION OF SEISMIC LINE GP.80-124	3 4
44	ORGANIC ABUNDANCE OF BAHARIYA FORMATION (ORG)	92
45	ORGANIC ABUNDANCE OF ABU ROASH FORMATION (ORG)	93
46	ORGANIC ABUNDANCE OF KHOMAN FORMATION (ORG)	94
47	CARBON RICHNESS OF BAHARIYA FORMATION (TOC)	96
48	CARBON RICHNESS OF ABU ROASH FORMATION (TOC)	97
49	CARBON RICHNESS OF KHOMAN FORMATION (TOC)	98
50	TOTAL POROSITY OF KHARITA FORMATION	IOI

FIG.	No. SUBJECT	PAGE
51	TOTAL POROSITY OF BAHARIYA FORMATION	IO2
52	TOTAL POROSITY OF ABU ROASH FORMATION	I03
53	EFFECT POROSITY OF KHARITA FORMATION	106
54	EFFECT POROSITY OF BAHARIYA FORMATION	107
5 5	EFFECT POROSITY OF ABU ROASH FORMATION	IO8
56	BURIAL DEPTH CURVE OF BED 3-1	II4
57	BURIAL DEPTH CURVE OF WD 33-1	II5
58	BURIAL DEPTH CURVE OF GP.AA-3	II6
59	BURIAL DEPTH CURVE OF SIT 3-1	II7
60	BURIAL DEPTH CURVE OF BED 4-1	II8
61	BURIAL DEPTH CURVE OF GP.TSW-1	II9
62	BURIAL DEPTH CURVE OF GP.H-1	120
63	BURIAL DEPTH CURVE OF GHOROUD-1	121
64	BURIAL DEPTH CURVE OF SHEIBA-1	I22
65	BURIAL DEPTH CURVE OF AG-5	I23
66	BURIAL DEPTH CURVE OF GP.T-15	I24
67	BURIAL DEPTH CURVE OF AG-2	I25
68	BURIAL DEPTH CURVE OF BED 8-1	126
69	OIL WINDOW THICKNESS MAP	127
70	SOURCE ROCK CHARACTERIZATION PANEL THROUGH	I28
	THE WELLS: WD.8-1, AG-5, GP.6-15 & MISAWAG-1	
71	SOURCE ROCK CHARACTERIZATION PANEL THROUGH THE	I29
	WELLS: BED.3-1,GP.AA-3,GP.Y-1,GP.Z-1 & WD.33-1	4 2)
72	GEOTHERMAL GRADIENT MAP	I32
73	RESIDUAL THERMAL EFFECT MAP	I33
74	TIME-TEMPRATURE INDEX MAP ON BASE OF BAHARIYA	I36
	FORMATION	پر <u>بد</u>

FIG.	No. SUBJECT PAG	E
75	TIME-TEMPERATURE INDEX MAP ON BASE OF	13 7
	ABU ROASH FORMATION	
76	TIME-TEMPERATURE INDEX MAP ON BASE OF	I38 .
	KHOMAN FORMATION	
77	VITRINITE REFLECTANCE MAP ON BASE OF BAHARIYA Fm	141
78	VITRINITE REFLECTANCE MAP ON BASE OF ABU ROASH Fm	I42
79	VITRINITE REFLECTANCE MAP ON BASE OF KHOMAN Fm	I43
80	MATURATION INDECES AND HYDROCARBON PRODUCT MAP	I44
81	TIME OF UNSET OF BAHARIYA FORMATION	I ∔ 6
82	TIME OF ONSET OF ABU ROASH FORMATION	I47
83	TIME OF ONSET OF KHOMAN FORMATION	I48
84	TIME OF PEAK GENERATION OF BAHARIYA FORMATION	i49
85	TIME OF PEAK GENERATION OF ABU ROASH FORMATION	I50
86	TIME OF END GENERATION OF BAHARIYA FORMATION	I52
87	TIME OF END GENERATION OF ABU ROASH FORMATION	I53
88	HYDROCARBON SATURATION MAP OF KHARITA FORMATION	I55
89	HYDROCARBON SATURATION MAP OF BAHARIYA FORMATION	
90	HYDROCARBON SATURATION MAP OF ABU ROASH FORMATION	I5 7
91	PRESERVATION OF HYDROCARBONS SOURCED BY BAHARIYA	I65
	FORMATION	
92	PRESERVATION OF HYDROCARBONS SOURCED BY ABU ROASH	166
	FORMATION	
93	PALEO-TECTONIC PROFILE THROUGH AGNES-1,	I69
	GP.X-1, GP.Y-1 & RABAT-1 WELLS	
94	PALEO-TECTONIC PROFILE THROUGH BED.8-1, WD.5-1	I70
	& BRE.23-2 WELLS	
95	PALEO-TECTONIC PROFILE THROUGH GP.AA-2, wD.8-1	I7I
	& SHEIBA-1 WELLS	

VIII

96	PALEO-TECTONIC PROFILE THROUGH GP.ZZ-1, WD.9-15-1	I 72
	& SHEIBA-1 WELLS	
97	PALEO-TECTONIC PROFILE THROUGH WD.8-1, AS-1 &	I73
	MISAWAG-1 WELLS	
98	PALEO-TECTONIC PROFILE THROUGH BED.8-1, AG-3 &	174
	GP.ZZ-1 WELLS	
99	PALEO-TECTONIC PROFILE THROUGH SIT 3-1 & GPJ-2	I75
	WELLS	
100	PALEO-TECTONIC PROFILE THROUGH GP.J-1, GP T-13,	176
	GP.X-1 & GP.Z-1 WELLS	
101	PALEO-TECTONIC PROFILE THROUGH GP.JJ-1, GP.AA-3,	177
	WD 7-1 & GHOROUD-1 WELLS	
102	PALEO-TECTONIC MAP AT THE END OF BAHARIYA Fm	I79
103	PALEO-TECTONIC MAP AT THE END OF ABU ROASH Fm	ISI
[04	PALEO-TECTONIC MAP AT THE END OF KHOMAN Fm	I83
105	PALEO-TECTONIC MAP AT THE END OF GINDI Fm	I85
106	PALEO-TECTONIC MAP AT THE END OF DABAA Fm	I37
107 .	PALEO-TECTONIC MAP AT THE END OF MOGHRA Fm	I38

ACKNOWLEDGMENT

I would like to express my sincere thanks to Prof. Dr.

M.A. Bassiouni, Dean of Faculty of Science, Ain Shams

University as well as the Late Prof. Dr. M.Y. Meneisy, Head of

the Geology Department, Faculty of Science, Ain Shams

University, for their offering the facilities for this work.

I express my sincere thanks and gratitude to Mr. Hussein Ali Kamel, Chairman of the General Petroleum Company for his fruitful discussion and criticism and for supervising the work.

I express also my deep thanks to Dr. Farouk Ibrahim El Afify, Assistant Professor of Geology at the Geology Department, Faculty of Science, Ain Shams University for his joint supervision, scientific discussions and comments.

My great indebtedness and gratefulness is due to Dr.

Ahmed S.A. Abu El-Ata, Assistant Professor of Geophysics,

Geology Department, Faculty of Science, Ain Shams University,

for his effective efforts and continued guidance and

supervision and reviewing this thesis.

I owe much to the direction and assistance oftered by Mr. Mahmoud Farid, Exploration General Manager, G.P.C. and also his constructive suggestions and inspiring and continuous encouragement.

Eventually, I express my Wife for her great help and permanent care.

A STUDY ON THE EFFECT OF THE STRUCTURAL-TECTONIC INFERENCES OF THE ABU GHARADIG BASIN ON THE SUBSRUFACE-HYDROCARBON IMPLICATION, WESTERN DESERT, EGYPT.

ABSTRACT

Geophysical information in the form of seismic and well logging data and subsurface geological information in the form of composite well logs data, are used to study the thermal-burial of history on the hydrocarbon maturation and generation of the Upper Cretaceous rock units (Bahariya, Abu Roash and Khoman Formations) in the central part of the northern Western Desert of Egypt. However, it is worth-mentioning that, the conclusions arrived at through this work are tested and confirmed through the already known petroleum discoveries in this important part of petroliferous province.

This currently achieved through four main processes: rock evaluation, burial history, geothermal maturation and time of generation. Source rock evaluation is carried out through the determination of the total organic content (ORG) and the total organic carbon (TOC) in the shaly rocks; as a measure for the organic richness of the considered units. The calculated values of the organic carbon are abnormally high. Burial history is performed through the utilization of the sedimentational-structural setting of the examined wells in the studied area in relation to the implicated geothermal gradients; as measure for th adaptability of this area to be hydrocarbon potential within the characteristic oil window. Geothermal maturation is revealed through the calculation of the local therma1 effect, time-temperature index and vitrinite reflectance; as a measure for the capability of the given physico-chemical conditions of the inherited material to hydrocarbon products of varying habitats. Time hydro-carbon generation is delineated through computation of the time of onset generation, the time of

peak generation and the time of end generation; as a measure for the efficiency of the available stratrigraphic intervals to complete the transformation cycle and the synthesise of hydrocarbons.

Time and migration paths of the hydrocarbons generated Abu Gharadig Basin are defined based on the maturation status. as well as paleo-tectonics, the porosities and hydrocarbon saturation maps. The traditional migration paths, which are accepted in the Abu Gharadig Basin, are controlled by both the primary and secondary migrations. The primary migration - of short distance nature - is considered to be responsible for the migration of hydrocarbons sourced inside Bahariya and Abu Formations. The secondary migration - of long distance nature is considered to be responsible for the migration of hydrocarbons sourced from the Khatatba Formation of Jurassic age, through the fault planes to the overlying reservoirs. The total and effective porosity maps indicate that, the migration paths were directed from the internal depocentre to the outward parts of the basin. Maturation studies of the Bahariya and Abu Roash source rock intervals illustrate that, the Bahariya Formation reached its peak of generation during the deposition of El-Gindi Formation of Eocene age. These suggest that, migration would have been initiated from the center of the basin to the outward direction after Late Senonian - post Khoman event and well preserved by Late Oligocene event. In this respect, Abu Roash Formation reached its peak of generation during the deposition of the Dabaa Formation of Oligocene age. In addition, the migration Senonian and controlled by the of post structures. Khoman Formation has a very limited area of maturation locating the central part of the basin.

The paleo-tectonics, porosities, hydrocarbon saturation maps suggest that, the hydrocarbons have been migrated, accumulated and entrapped at the high areas of the Abu Gharadig basin.

CHAPTER -I-

GENERAL GEOLOGIC SETTING