

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

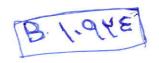
التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من


To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

CORONARY REVASCULARIZATION IN PATIENTS WITH DIFFUSE CORONARY ARTERY DISEASE

Thesis

submitted to the Faculty of Medicine, University of Alexandria, in partial fulfillment of the requirements of the degree of

DOCTOR OF CARDIOTHORACIC SURGERY

By

Bassem Adel Ramadan

MBBCh Alex MS, Alex

Faculty of Medicine
University of Alexandria
2001

SUPERVISORS

Prof. Dr. Mohamed Moustafa Agha
Professor & Head
of Cardiothoracic Surgery Department,
Faculty of Medicine
University of Alexandria.

Dr. George Reul,

Clinical Professor of Cardiovascular Surgery, Director of Cardiovascular Lab, Texas Heart Institute, Houston, Texas United Sates of America.

Prof. Dr. Mounir Zeerban
Professor of Cardiothoracic Surgery,
Dean of Faculty of Medicine, Beirut University,
Faculty of Medicine
University of Alexandria.

ACKNOWLEDGEMENT

Thanks to ALLAH Almighty who enabled me to accomplish this work.

I would like to extend my gratitude to professor Dr. Mohamed Moustafa Agha, who continuously offered his careful guidance, scientific input and effective direction. Thank you for your indispensable help to achieve this work.

Deep respect and indebtedness are sincerely extended to Dr. George Reul, who generously shared his vast sea of experience and knowledge and allowed this work to see the light.

Deep thanks are due to Prof. Dr. Mounir Zeerban, for his time, active encouragement, and meticulous supervision.

CONTENTS

Cha	pter	Page
I.	INTRODUCTION	1
П.	AIM OF THE WORK	112
III.	MATERIAL	113
IV.	METHODS	114
V.	RESULTS	157
VI.	DISCUSSION	225
VII.	SUMMARY	260
VIII.	CONCLUSION AND RECOMMENDATIONS	262
IX.	REFERENCES	264
	PROTOCOL	
	ARABIC SUMMARY	

List of abbreviations

BARI : Bypass Angioplasty Revascularization Investigation

CABG : Coronary Artery Bypass Graft surgery

CAD : Coronary Artery Disease

CASS : Coronary Angioplasty versus Surgery Study

CCS : Canadian Cardiovascular Society

CEA : Coronary endarterectomy
CHF : Congestive heart failure

COPD : Chronic obstructive pulmonary disease.

CVA : Cerebrovascular accident Cx : Circumflex coronary artery

DM : Dibetes Mellitus EF : Ejection fraction

ESRD : End-stage renal disease
HDL : High density lipoprotein
IABP : Intra-aortic balloon pump.
IMA : Internal mammary artery

LAD : Left anterior descending coronary artery

LAO : Left Anterior Oblique projection LCOS : Low cardiac output syndrome

LDL : Low density lipoprotein

LIMA : Left internal mammary artery LMCA : Left main coronary artery

LV : Left ventricle

LVAD : Left ventricular assist device LVD : Left ventricular dysfunction

LVEDD : Left ventricular end diastolic dimension

MI : Myocardial infarction

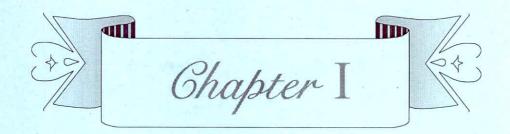
NYHA : New York Heart Association

PDA Posterior descending coronary artery

PLV : Posterior left ventricular branch

PTCA Percutaneous Transfemoral Coronary Angioplasty

RAO : Right Anterior Oblique projection


RCA : Right coronary artery

RIMA : Right internal mammary artery

THI : Texas Heart Institute

TMLR : Transmyocardial Laser Revascularization

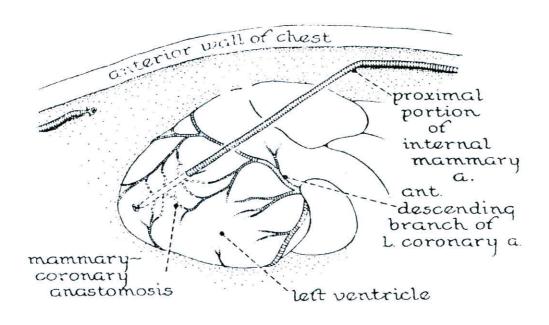
X-CLAMP : Cross clamp

INTRODUCTION

INTRODUCTION

History of Surgery for Ischemic Heart Disease

Angina pectoris was first described by Heberden in 1772⁽¹⁾. Over the next 150 years, the understanding of the pathology, pathophysiology, and the clinical correlation slowly evolved. By the early 20th century, the clinical presentation and consequences of sudden coronary artery occlusion were recognized. The first successful heart suture was made by Rehn in 1896. In the 1920s mitral valve surgery began by Souttar and Cutler⁽²⁾. This led to the development of the first procedures to treat patients with myocardial ischemia.


The first operations were indirect methods to either influence the pain of myocardial ischemia by the interruption of the sensory nerve pathways, or to decrease the cardiac workload by lowering the body's metabolic requirements.

François Frank⁽³⁾ suggested in the 19th century that the sympathetic ganglionectomy of the upper thoracic ganglia would relieve angina. It was not until 1916 when Jonnesco⁽⁴⁾ performed a bilateral cervical sympathectomy including the upper dorsal ganglia. Kocher⁽⁵⁾ in 1901 had observed that a patient with angina became asymptomatic after total thyroidectomy. This was explained by the reduction of cardiac work by decreasing the metabolic rate. Thyroidectomy became popular until the operation was supplanted by the availability of the antithyroid drugs, including the radioactive iodine. So, like sympathectomy, thyroidectomy was abandoned when results of the operative efforts to increase myocardial blood flow were judged promising.

Alexis Carrel⁽⁶⁾ performed the first coronary artery bypass graft in 1910. He anastomosed the innominate artery of one dog to the distal coronary artery of another. In other animals, he used a free carotid artery to graft between the descending thoracic aorta and the left coronary artery. Carrel also performed the first vein bypass graft by interposing a vein segment into the descending thoracic aorta of a dog.

In 1932 Claude Beck⁽⁷⁾ observed that in pericarditis, the adhesions between the pericardium and epicardium were vascular. So he developed several procedures to promote vascular anastomoses between coronary arteries and surrounding tissues. He produced a sterile pericarditis by mechanically abrading the epicardium and pericardium and encouraging the formation of collateral circulation procedures, which he termed cardiopericardiopexy and poudrage. Gross⁽⁸⁾ in 1936 redirected the venous drainage of the heart back into the myocardium. This technique was the basis for retrograde coronary sinus cardioplegia.

In 1933 Wearns and colleagues⁽⁹⁾ described a unique aspect of the myocardial microanatomy; the sinusoids. They described the presence of direct channels between the heart chambers and the myocardium, which encouraged other investigators to attempt direct myocardial revascularization from the left ventricle. In 1946, Vineberg⁽¹⁰⁾ implanted the cut end of the internal mammary artery (IMA) into the myocardium of a human in an attempt to encourage the development of collaterals between the systemic and coronary circulations (Fig. 1). He believed that the myocardial sinusoids would initially absorb the flow of

Figure 1. Internal mammary artery detached from its chest wall attachment and buried in a tunnel in the left ventricular myocardium. Open stumps of intercostals not shown.

Adapted from Vineberg A. (11)

blood and eventually capillaries would form between the implanted vessel and the myocardial arterioles. Massimo and Boffi⁽¹²⁾ implanted T-shaped tubes into the myocardium. Unfortunately, none of these techniques were successful, as the created channels were occluded by thrombosis, scarring, or both.

In 1954, Murray⁽¹³⁾ experimentally performed direct coronary artery bypass grafting using the carotid, axillary, and internal thoracic arteries. Gibbon⁽¹⁴⁾ developed the first heart/lung machine, which was first used in the Mayo Clinic in 1954. Charles Bailey performed the first closed endarterectomy without cardiopulmonary bypass in 1956⁽¹⁵⁾ using a retrograde, distal, blind technique. In 1957, Sabiston⁽¹⁶⁾ and colleagues anastomosed the internal thoracic (mammary) artery (ITA) to coronary vessels and subsequently used free carotid artery grafts experimentally. William Longmire⁽¹⁷⁾ performed the first human ITA to coronary artery anastomosis in 1958.

In 1959, F. Mason Sones⁽¹⁸⁾ introduced selective coronary angiography, providing for the first time precise knowledge of the location and extent of the coronary lesions, and allowing to objectively assess postoperative results. This technique allowed myocardial revascularization to become a viable clinical procedure.

The first aortocoronary bypass using saphenous vein was performed by Sabiston in 1962⁽¹⁹⁾. By the late 60's, techniques were well established and safe, encouraged by the reliability of coronary angiography. Sen and colleagues⁽²⁰⁾ reported the application of myocardial acupuncture, or the use of needles to create channels between ventricular blood into the myocardium. Favaloro and colleagues⁽²¹⁾ aggressively worked on the clinical application of coronary bypass and demonstrated its effectiveness. They were the first to use a free saphenous