SPECTRAL AND IRRADIATION STUDIES ON DIFFERENT COLORS OF QUARTZ CRYSTALS

A THESIS

Submitted to Ain Shams University
In Partial Fulfilment of the Requirements
of the Degree of M. Sc.


Ву

INAS KAMAL BATTISHA

(B. Sc)
(Physics and Pure Math.)

Department of Physics
University College for Girls
Ain Spars Draversity

1990

وطاتونيتي إلا بالله

صدق الله العظيم

Spectral and irradiation studies on different colors of quartz crystals

Thises Advisors.

- 2. Prof. Dr. L.A. Guirguis.

 Nuclear Materials Corporation

 Cairo, Egypt.

3. Dr. Evon Aziz Farag.

Assistant Prof. of Physics. Evon Aziz Farag.

University College for Girls (Ain Shams University).

Approved

. I.A. Gurgun

Head of Physics Department
Prof. Dr.M. Hassab-EL-Naby.

ACKNOWLEDGEMENT

"In the name of ALLAH most merciful, most gracious"

I Kneel humbly to ALLAH thanking HIM for showing me the right path without HIS help my efforts would have gone astray.

I would like to express my sincere thanks to Prof. Dr. M. Hassab EL-Naby-Head of Physics Department Faculty of Girls, Ain Shams University.

My deep gratitude is due to Prof. Dr. Aida EL Bialy
Physics Department, Faculty of Girls, Ain Shams University
for her kind supervision and valuable discussions during
the progress of this work.

I am indepted to Prof. Dr.L.A. Guirguis, Nuclear Materials Corporation. Cairo, Egypt. For suggesting the point of research, contact supervision help, encouragement and fruitful discussions during all stages of this study.

I would like to express my gratefulness to Dr. Evon Aziz Farag, Assistant Prof. of Physics, University College for Girls, Ain Shams University for her supervision.

The auther is also greteful to Dr.S.K.Youssef, Assistant Prof. of Physics, Atomic Energy Authority for his continuous instructive suggestion and fruitful comments.

Thanks are also due to Dr. Hoda El-Ashry Assistant Prof. of Physics at Radiation Technology Centre, Cairo for her kind help in the X-ray fluorescence analysis.

Finally the author wishes to acknowledge her Family and her husband for their supplications and prayers.

CONTENTS

•	rage
ABSTRACT	
INTRODUCTION	
1.1. General Review	1
1.1.1. Luminescence	4
1.1.1.a. Thermoluminescence	5
1.1.1.b. Radiophotoluminescence	7
1.1.2. Infrared spectroscopy	9
1.1.3. X-ray fluorescence	16
1.2. Aim of the Present Work	21
PHYSICAL PRINCIPLE.	
2.1. Color Center	22
2.1.1. Color center in quartz	38
2.2. Concept of Luminescence	40
2.2.1. Thermoluminescence consideration	41
2.2.1.1. Thermoluminescence phenomena	41
2.2.1.2. Thermoluminescence theoretical conside-	`•
ration	43
2.2.1.3. Fading of thermoluminescence (TL)	44
2.211.4. Thermal glow curve	46
2.2.1.5. Method of the determination of trap	
parameters	47
2.2.2. Radiophotoluminescence (RPL) consideration.	50
2.3. Concept of Infrared Spectroscopy	56
2.3.1. Theoretical consideration in Infrared spects	cos-
copy	59
2.3.2. Intensity of infrared band	61

	Page
	68
2.4. Concept of X-ray Fluorescence	00
MATERIAL, IRRADIATION AND MEASURING SYSTEMS MATERIALS	
3.1. Materials	74
3.1.1. Annealing	76
3.1.2. Samples preparation of luminescence study	76
3.1.3. Disk samples preparation of irradiation	77
3.1.4. Samples preparation for infrared study	77
3.1.5. Samples preparation for X-ray fluorescence	78
3.2. Irradiation Sources And Their Calibration	78
3.2.1. Gamma-ray irradiation set up	79
3.3. Measuring system	79
3.3.1. Radiophotoluminescence read out measuring.	
system	82
3.3.1.1. Calibration of spectrofluorophotometer	
measuring devices	85
3.3.2. Thermoluminescence read out system	89
3.3.2.1. Read out procedure	91
3.3.2.2. Accuracy of thermoluminescence measuring	ğ
System	92
3.3.3. Infrared Measuring System	94
3.3.3.1. Calibration of I.R. spectrophotometer	95
3.3.4. X-ray fluorescence measuring facility	98
3.3.4.1. Experimental technique	98
3.3.4.2. Description of system	98
3.3.4.3. Physical description	100
3.3.4.4. X-ray tube excitation	103
3.3.4.5. Charged particle excitation	105

	Page
3.3.4.6. The semiconductor (solid state) detector.	105
3.3.4.7. Preamplifier	109
3.3.4.8. Amplifier	110
RESULTS AND DISCUSSION	110
4.1. General Review	113
4.1.A. Thermoluminescence (TL) of guartz materials	116
4.1.A.1. Response of natural occuring guartz to	
gamma rays	116
4.1.A.2. Glow curve studies	121
4.1.A.3. Heating effect on TL-sensitivity	123
4.1.A.4. Fading of the natural material	126
4.1.A.5. Dose response	131
4.1.A.6. Determination of trapping parameters	
a) Trap depth evaluation (E)	134
b) Frequency factor (S) and half life (I	
evaluation	138
4.1.A.7. Sensitization and pre-dose	141
4.1.A.8. Measurement accuracy	145
4.1.A.9. Dosimetric utilization	148
4.1.B. Radiophotoluminescence (RPL) of natural	
materials	150
4.1.B.1. General	150
4.1.B.2. Radiophotoluminescence properties	150
(I) Luminescence spectra of virgin quart	
samples	150
(II) Induced effects of annealing	
(III) Induced effects of gamma radiation .	
	200
(IV) Effects of thermal annealing on χ - Induced luminescence spectra	157
Induced Innithescence specific	~ • • •

	Page
(V) Effect of isothermal annealing on	
luminescence sensitivity	159
(VI) Fading effect	160
(VII) Post irradiation annealing	164
(VIII) Variation of luminescence response with	
gamma dose	166
4.1.B.3. Measurement reproducibility	173
4.1.B.4. Dosimetric utilization	178
4.2. Infrared Spectroscopy	182
4.2.1. Colorless and smoky quartz crystals	
(original samples)	182
4.2.2. Effect of temperature on the studied quart:	z
samples	187
4.2.2.1. Effect of temperature on colorless	
quartz crystal	187
4.2.2.2. Effect of temperature on smoky quartz	
crystal	195
4.2.3. Effect of δ -irradiation on the heated	· •
colorless quartz crystal at 400°C and	·
smoky quartz crystal at 500°C	203
4.2.3.1. Effect of G-irradiation on the heated	١.
colorless quartz crystal sample at	
400°C	203
4.2.3.2. Effect of δ -irradiation on heated	
smoky quartz crystal at 500°C	210
4.3. X-Ray Fluorescence Analysis	217
CONCLUSIONS	228
REFERENCES	232
ARABIC SUMMARY.	

ABSTRACT

ABSTRACT

The structural imperfection and distribution of positive and negative charge in the ideal crystal are consisting an uninterrupted alteration of +ve and -ve ions. However, in the nature and according to the extensive studies, the real crystal do not attain the ideal structure picture, instead they may have a great structural imperfections, where-in occasional positive and negative ions are missing at random throughout the crystal structure. Furtheremore, in a pure crystal the number of missing + Ve ions (vacancies) must equal the number of missing -ve ions (vacancies), in order that, the crystal are as a whole be electrically neutral. The absorption of proper thermal or optical excitation energy by the crystal can raise the trapped charge carriers from the ground state to one of its higher excited state and even sufficient excitation energy can expel these charge carriers from their vacancies "traps". The possibility of absorping thermal or optical energy make the crystal colored and the resulted charge carrier imperfection is called "color centers". Again induced effect of ionizing radiation may either producing an increasing probability of these vacancies and interstitials in the structure perfect region of the crystal or liberating free electron charges within the crystal lattice structure.

In the present study, the spectral and irradiation studies on colorless and smoky quartz crystal are studied in details. The different studied materials are grinded into fine powders of 80-200 mesh and then pressed into 3 mm diameter discs, each is about 10 mg weights. The different

prepared discs are thermally treated in different annealing temperatures, noted as 200, 300, 400, 500, 600 and 700°C for one hour before irradiation to gamma ray. The induced effects of different annealing courses as well as radiophotoluminescence sensitivity and behaviour for various types of quartz are studied in details.

Also, the relevant changes in the chemical composition of these materials is resolved by infrared spectroscopic analysis as well as by x-ray fluorescence. In general, the contents of the present thesis have been divided into five chapters.

In the first chapter, a general introduction is given which includes a general review on induced effects of radiation on color centers characterized the solid materials in use. The effect of the formation of these color centers on the physical and chemical behaviours of these natural materials is also discussed. This disscussion is carried out on basis of current literature as detailed review on the luminescence behaviour of these naturals as a physical changes. As well as the structure changes of the original material, its heated and irradiation products by infrared analysis is also presented as well as x-ray fluorescence analysis for the estimation of the elemental composition of the studied samples. The aim of the present work is also included.

The second chapter of this thesis exhibits a complete review on the theoretical concepts beside the phenomena of the luminescence, the infrared quantitative analysis as well as the x-ray qualitative analysis.

material under investigation, besides a quantitative analysis of the basic composition, the dopant concentration presented in these studied quartz samples and finally the qualitative analysis of the basic composition. The radiation sources and their calibration Y-irradiation set up, are also included. This chapter is also detailed describing the thermoluminescence, the radiophotoluminescence, infrared and the x-ray measuring facilities and their calibration procedure.

The experimentally deduced results are also discussed in chapter four of the thesis through four main techniques. The deduced experimental results are beneficially explaining the gamma induced effects on the behaviour of the stimulated luminescence, either by (a) the effect of thermal energy, thermoluminescence as noted in the first technique and/or (b) by the effect of light energy, radiophotoluminescence as noted in the second technique. Furthermore, the gamma induced chemical changes of these studied quartz materials are also presented as quantitative analysis for the induced chemical changes of quartz composition using infrared spectroscopic analysis, as a third technique. And the energy dispersive x-ray fluorescence (EDXRF) technique is used as qualitative

analysis. Mostly, techniques one and two of this chapter reflect the beneficial use of that revealed gamma induced physical changes in the color centers as an induced luminescence of these studied material as status condition of the irradiation dose. The experimental results show in details the induced changes of dose response as a function of stimulated luminescence sensitivity and beside the stability of that radiation induced effects on the revealed physical changes. The intercomparison study for the different parameters affecting the induced physical changes of the two different quartz samples is also presented for the utilization in the field of dosimetry. The reproducibility and accuracy of the experimental results show pronouncing.

The presented study of the infrared as a third technique, shows pronounced difference in the obtained I.R. spectra of the original two studied quartz samples. In fact some new peaks appear in each sample. Moreover, these is a change in the shape and/or position of the fundamental bands. Heating effect products a great change in the absorptivity of the silicate and water bands at different temperatures with a 'maximum at 400°C, in case of colorless quartz crystal sample and 500°C in case of smoky quartz crystal sample. On the other hand different produces many structural changes as revealed by the disappearance, appearance and/or shift of some of the I.R. bands.

To sum up from both the semi quantitative x-ray fluorescence analysis as a fourth technique and the quantitative