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ABSTRACT

4 theoretical study is given of the phonon heat
conduction in nonmetallic materials. The complementary
variational principle is ussd to obtain sequencesSof lower
and upper bounds for the phonen thermal conductivity., In
this technique the phonon collision operator should be
decomposed into two parts, each of which should satisfy
certain properties., The necessary conditions for the
convergence of the sequencesof lower and upper bounds
as well as the best way of decomposing the phonon colli-
sion operator are explored in a more rigorous manner than
was done hitherto, ?he study has been performed in quite
a general way so that t;é results obtained canalso be used

for the calculatipon of cother transport coefficients,

Further, a new model operator for umklapp proce-
sses is formulated in sucha way that the guasi-conservation
of wavenumber is taken into acecount. In compariscn with
the models used in earlier work the present model has
the advantage that the reciprocal lattice vectors need
not be grouped in a certain manner. 1t also yielded a
new expression for thermal conductivity which,in turn,
gave a reasonable quantifative apreement with the experi-

mental data for Ge and Lif, without using any fitting
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parameters, The analysis shows, further, that the quasi-
conservation of wavenumber in the umklapp process gilves a
negative contribution to the thermal conduetivity of the

same order of maghitude as that found ip previcus work,

41lso it seems to us that in sowe previous treat-
ments the reciprocal lattice vectors involved in certain
types of umklapp interacticns as well as the areas and
limits of some of the integrals needed in the calculations
were incorrectly determined. In the present work these
points have been amended and more accurately considered.
Mereover, we have derived and used general expressions for
the strengths of all types 6f three-phonon interactiong,
rather than using the appr;ximate spacial forms reported

in earlier work,
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CHAPTER ONKE

" TNTRODUCTION”
r'#‘,
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The thermal conductivity is the coefficient

which measures the thermal transport properties of sclids,
In general both phonons (lattice vibrationsj and charge
carriers {electrons andd holesj contribute to the heat
current and conseguently to the thermal conductivity
coefficient, In pure metals the electronic contribution
is dominant at all temperatures and therefore the
thermal conductivity satisfies the Wiedemann-Franz -

law, For dielectric and most of intrinsic semiconductor
materials phonons play the essential role in heat conduc-
tion and the thermal conductivity is almost entirely

due to the phonon contributicon. In semimetals, extrinsic
semiconductors and:metals containing large amcunts of
impurities both thédzggtributions from charge carriers
and phonons are of importance, Korenblit et al Llj and
Uher and Goldsmid ij} , however, introduced a method
which could be used to separate the electronic and

phoncon parts of thermal conductivity in semimetals,
Similar analysis was also recently used for the case

of metals by Amundsen et al {@] and Tausch et al {{]

In the present work we confine ourselwes to
the thermal conductivity of phonons and thus consider
the calculation of this coefficient in dielectries and

intrinsic semiconductors where the effect of charge

N
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carriers on thermal conduction can be entirely neglected,
However, the results obtained can be applied to the phonon
part of thermal conductivity for other materials, if the
effect of the electron phonen interaction is taken into
account (see for example Borchi et al Eﬁ} j. For the
calculaticom of the phonon thermal conductivity two
main approaches are usually adopted, The first is based
on the Kubeo formula for the energy current (Kubo et al
rﬁj } and on Van Hove's thecory of the time evolution of
dissipative systems (Van Hovelj?] ,[ié]j. This approach
was used in the work of Mori | 9] , Luttinger[lﬁ], Martin
[}E} and Kirczenow [Eg] . The second approach is establis-
hed on the Boltzmann equation whiiﬂidescribes the flow
cf phonons in the presence of a*tééperature gradient,
The main results of this approach are reviewed in Klemens
[13),{14] , ziman{15] , Carruthers [1€], Parrott and Stuckes
[}?] , Berman [18] and Callaway [}5] . The first approach
is outside the intended scope of the present work. We

thus restrict ocur attention to the second approach which

in fact is more applicable and much simpier.

The phonon Bolizmann equation consists of twe
terms. The first depends on the temperature gradient
{the driving force) and the phonon distributiocn while the

second represents the phonon celilision operator., The
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different types of interactions which phonons can undergo

in nonmetallic materials are boundary scattering, disloca-

tian scattering, interactions with mass defects and three-
phonon interactiong bath normal and umklapp. A1l of these
types of interactions are supposed to conserve the energy
of phonons within the limits of the uncertainty principke.
However, the only type of these interactions which con-
serves wavenuinher {(wavevector } is the three-phonon normal
process. The other types of interactions are, therefore,
termed resistive processes. Umklapp processes are also
distinguishable from other resistive interactions by the
fact - that they guasirconserve wavenumber (the wavenumber
is allowed to vary yith & reciprocal lattice vector in

3 . . H’*
each’ interaction}.

In view of what has been mentioned above it is
clear that the difficulty in solwving the phonon Beoltzmann
equation arises from the complexity of the collision
operator which represents the phonon scattering mechanism,
The form of this operator, however, can be substantially
simplified by considering only the first order deviations
from the pheonon equilibrium distribution., This approxi-
mation linearises boith the phonon collision operator and
the Boltzmann egquation., In spite of the considerahble
simplifications which result from such approximation no

exact solution exists for the resulting linear Boltzmann
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equation. Approximate methods and technigues must therefore
be utilized to obtain the solution. The most important
techniques used for such purpose are ij the relaxation
time approximation, 1i) the replacement ¢f the exact
collision operator by a model operator which possesses

the same important properties , iii} the wariational

priuciple,.

In the ordimary relaxation time apprdximation
the diagonal part of the collision operator is only retained
while the other off-diagonal terms are completely neglected
This approximatiocn can be justified mathematically in very
few cases, It, however, has a goof'}nterpretation from the
physical point of view since the:siééonal part of the
collision operator can be related to the relaxation time
needed to retain the phonon eguilibrium distribution,

The main objection to the relaxation time approximation
is that it does not preserve the important features of
the exact collision operator. In this respect 1t is clear
that in this approximation neither the energy nor the
wavenumber are conserved and consequently no distinction
is made between normal and resistive processes, The rols
of normal processes, however, has been studied more care-

fully by uwusing a modified relaxation time technigue

(Chllaway [éd] . In this technique Callaway used two
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different relaxation times to represent normal and resis-
tive processes. He, further, assumed that these two kinds
cf . processes relax phonons to different eguilibrium dis-
tributions, The equilibrium distribution for eaoh kind
has been chosen so that the regulred conservation condi-
tions are satisfied. The equilibrium distribution of
resistive processes was thus taken to be the ordinary
Bnse Einstein (Planck's) distribution, For normal pro-
cesses, however, Cgallaway used a modified form for the
Bose Einstein equilibrium distribution which depended on
a new parameter (drift velocity) whose value wag inferred
from the wavenumber consevation condition. The expression
for thermal conductivitg chtained by Callaway [2@] consists
of two terms. The firéf'?% identical with the resuit
found in earlier work by using the ordinary relaxation
time approximation (Klemens [?i] ). The second term
represents the gffect of the normal process conservation
of wavenumber. Also, it reflects, in a sense, the effect
of the off-diagonal part of the normal process collision
operator which was neglected in the ordinary relaxation

time technique,

4 more adequate derivation for the Callaway
expression for thermal conductivity was given later by

krumhansl [22| and Guyer and Erumhans} [23] . Also in the

Central Library - Ain Shams University



original analysis of Callaway [20] the longitudipal and
transverse branches of the dispersion relation were replaced
by one average braoch. Parrott [24] and Simons [?%]
generalized independently the Callaway expression to

take into consideration the different contributions from
longitudinal and transverse phonons, after an incorrect

attempt by Kosarev et al {?@] '

For the calculation of thermal' conductivity
from the €allaway result one needs suitable expressions
for the relaxation times representing the different phonon
scattering mechanisms. The relaxation times of boundary,
dislocaticn and mass defects scattering were respectively
obtained by Casimir %?qr'; Rlemens [21] and [28] . &s
regards normal and umklapp processes, the problem of
calculating the relaxation times is quite complicated.
Only approximate formulage which held for phonons of low
frequencies were derived for the normal process relaxa-
tion time by Merring [29] and for the umklapp process
relaxation time by Klemens [21],[13] and by Mikhail and
Simons [?@j . The Callaway expression for thermal conduc-
tivity was used successfully to fit the experimental data
of several dielectric and semiconductor materials over

wide temperature ranges. In this connection we refer
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to the work of Callaway [ZﬁJ on germanium, the work of
Bermar and Brock Fl] on 1ithium fluoride, the work
of Jackson and Walker [3%] on sodium fluoride,

the work of Kimber and Rogers [ﬁﬂ on solid ,

neon and the work of 5arr0tt [?i],[éé} on germanium-
silicon alloys, It is, however, a general characteristic
of all of these analyses that the approximate forms of
the normal and umklapp relaxation times which are only
valid for phonons of low frequencies were used throu-
ghout, Also, the parameters specifying these relaxation
times were treated as adjustable parameters whose values
were obtained from the best fit to the experimental
resultis,

4 4
A more rigorous technigue which has been more

recently utilised to scolve the linearised pheonon Beltzmann
eqﬁaticn is to replace the exact collision operator by

a model operator which possesses the same impertant
properties. The model operator would of course has a
simple structure than the exact operator so that the
solution of the Boltzmann equation can be eﬁsily cbtained.
The important properties which should be satisfied by

the model ocperator are stated clearly inﬂ§2.1 and

.§4.l in the present work. However, we emphasize here
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that the model operator representing resistive processes
should conserve energy while the model ocoperator represen-
tiﬁg normal processes should conserve both energy and
wavenumber, The first attempt along this direction was
due to Simons [36]. In this attempt Simons [36] formu-
lated the model operator in such a way which is almost
equivalent to the approaches ¢f Callaway [?@] and Krumhansi
[?é] . However in & more recent article Simons {5@] presen-
ted a new method for formulating model coperators. This
new formulation has enabled him to derive a meodel operator
for umklapp processes in which the quasi—conservation of
wavenumber is preserved * This important property of
umklapp processes hag.ﬂct heen taken into account in alil
the earlier treatments, reviewed above, since in these
treatments umklapp processes have been treated as a part
of the whole resistive scattering mechanism. The Simons
model [37} was then used by Mikhail [38] to represent
the umklapp part of the phonon cecllisicon operator. A
new expression for thermal conductivity has accordingly
been obtained, This new expression lnvolve the two
ordinary terms of the Callaway expression in addition
to a new term which arises naturally because of the
more accurete treatment of umklapp preocesses. The
correction term, therefore, represents the effect of

the guasi conservation of wavenumber in the umklapp
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