TOXICOLOGICAL STUDIES ON THE LARVAE OF <u>CULEX PIPIENS</u> (L.)

BY

AZZA ABDEL FATTAH MOSTAFA

A thesis submitted in partial fulfilment

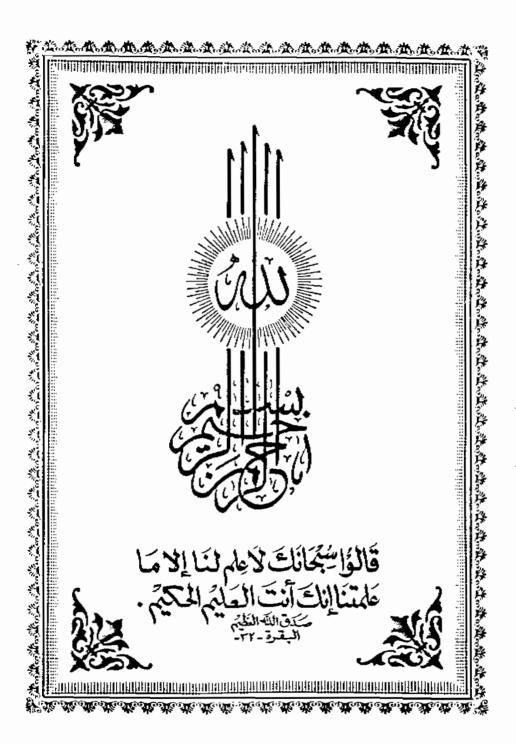
of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science
(Pesticides)


Department of Plant Protection

Faculty of Agriculture

Ain Shams University

[Edition

1990

Approval Sheet

TOXICOLOGICAL STUDIES ON THE LARVAE OF CULEX PIPIENS (L.)

By

AZZA ABDEL FATTAH MOSTAFA

B.Sc. Agric. (Entomology) Ain Shams Unive. (1969)

M.Sc. Agric. (Pesticide) Ain Shams Unive. (1982)

This thesis for Ph.D. degree has been approved by :

Prof. Dr. E.M.K. Hussein - Esouat M.K. Husslers

Prof. of Pesticides, Faculty of Agric.;

Ain Shams Unive.

Prof. Dr. A.Sh Abdel Azziz - A. Shall

Prof. of Entomology Dean of Faculty of Agric.,

Suez Canal Unive.

Prof. Dr. A.K. Sobiha --- A.K. Sobeily

Prof. of Pesticides, Faculty of Agric.,

Ain Shams Unive.

Date of examination: 24.5.1990

ACKNOWLEDGMENT

The Writer wishes to express her sincere thanks and appreciation to Dr. Esmat M.K. Hussein, Professor of Pesticides, Department of plant protection Faculty of Agriculture, Ain Shams University, for supervising this work and for her useful help, guidance advice and valuable criticism during the course of this work, preparation and revision of the manuscript.

The auther is also grateful to Dr. S.S. Bekheit Consultant at the Research Institute of Medical Entomology, Ministy of Health, for her, valuable advice throughout the course of this study.

Thanks are also due to the name of late Dr. A.M. Shaaban who was the Professor of Pesticides, Department of plant protection faculty of Agriculture, Ain Shams University for his encouragement and guidance, advice and help.

My greatest thanks to my colleages who were kind anough to help in the present study.

TABLE OF CONTENTS

	Page			
I- INTRODUCTION	1			
II- REVIEW OF LITRATURE	5			
Resistance to organophosphorus compoundsResistance to pyrethroids	5 45			
III- MATERIALS AND METHODS 1- Structural formulae of insecticides used a. Organophosphorus compounds b. Synthetic pyrethroides compounds 2- Collecting and rearing techniques 3- Toxicological studies A. Build up of resistance B. Susceptibility of malathion selected strain to certain insecticides 4- Biochemical studies	53 53 54 55 56 58 58 61 62			
IV- RESULTS	68			
(1) Toxicological studies	68			
A. Rate of development of resistance or tolerance	68 68 74			
B. Reversion of resistance to malathion	80			
C. Susceptiblity of malathion selected strain to certain insecticides	81			
D. Biochemical aspects of pressured 4 <u>th</u> instar larvae	88			
V- DISCUSSION	93			
VI- SUMMARY	102			
VII- LITERATURE CITED				
WITE ADARIC CHMMARY				

LIST OF TABLES

		Page
*	Table (1): LC ₅₀ values, tolerance level and slopes of permethrin treated - 4th instar larvae of <u>Culex pipiens</u>	70
*	Table (1) a : Rate of tolerance development between generations of permethrin pressured 4th instar larvae of <u>Culex pipiens</u> expressed in times	71
*	Table (2): LC ₅₀ values, tolerance level and slopes of malathion treated -4th instar larvae of Culex pipiens	75
*	Table (2) a: Rate of tolerance development between generations of malathion pressured 4th instar larvae of <u>Culex pipiens</u> expressed in times	76
*	Table (3): LC ₅₀ values and slopes of 4 <u>th</u> instar larvae of malathion treated - <u>Culex pipiens</u> at different generations	8 2
*	Table (4) : LC ₅₀ values and slopes to the different insecticides of 4th instar larvae of malathion resistant <u>Culex pipiens</u>	85
*	Table (5): Acetylcholinesterase activity in heamolymph of the 4th instar larvae of different strains and generations of Culex pipiens	90

LIST OF FIGURES

		Page
*	Fig. (1): Ld-p lines of permethrin treated- 4th instar larvae of <u>Culex pipiens</u> at different generations	72
*	Fig. (2): Ld-p lines of malathion treated-4th instar larvae of <u>Culex pipiens</u> at different generations	77
*	Fig. (3): Ld-p lines of malathion treated- 4th instar larvae of <u>Culex pipiens</u> on the 21st, 31st and 32nd generations	83
*	Fig. (4): Ld-p lines of certain insecticides treated- 4th instar larvae of Culex pipiens at the 21 st generation of malathion strain	86
*	Fig. (5): Ld-p lines of certain insecticides treated- 4th instar larvae of <u>Culex pipiens</u> at the 21st generation of malathion strain	87
*	Fig. (6): Correlation between activity of Acetylcholinesterase in haemolymph of malathionand permethrin - pressured strains of <u>Culex pipiens</u> at different generations	91

ABSTRACT

TOXICOLOGICAL STUDIES ON THE LARVAE OF CULEX PIPIENS (L.)

Ву

AZZA ABDEL FATTAH MOSTAFA

B.Sc. (Agric.) Ain Shams Unive. (1969)

M.Sc. (Pest.) Ain Shams Unive. (1982)

Under the Supervision of :

Prof. Dr. E.M.K.Hussein

Prof. of Pesticides, Faculty of Agric.;
Ain Shams Unive.

Prof. Dr. S.S.Bekheit.

Consultant in the Research Inst.

of Medi. Entomol., Ministry of Hlth.

Experiments were conducted to study the development of tolerance or resistance in the <u>Culex pipiens</u> larvae to certain insecticides, i.e. permethrin and malathion. The cross resistance of malathion strain was also studied against chlorpyrifos, sumithrin, sumethion, permethrin and decamethrin. Morever, the correlations between the development of resistance to insecticides and the activity of acetylcholinesterase enzyme in the heamolymph of the 4th instar larvae was also studied throughout the course building up resistance in the 5th, 10th, 15th and 20th generations.

The $4\underline{th}$ instar larvae of <u>Culex pipiens</u> were selected with LC_{25} of permethrin and malathion for 21 successive generations.

Susceptibility tests were done to measure the limit of suceptibility to both the permethrin and malathion in the control colony in the generations of parent, F_{11} and F_{21} .

Experiments were carried out on a subcolony of the selected strain to study the reversion of malathion resistance in <u>Culex pipiens</u> larvae.

The sensitivity of the 4th instar larvae of malathion resistant strain compared to the parent strain were studied against, chlorpyrifose, sumithion sumethrin, permethrin and decamethrin, 21 generations after selection.

On comparison basis, results of cholinesterase bloassay revealed that differences in activity percentages recorded interstrain were generally, lower in malathion - treated strain, than those in permethrin - strain.

INTRODUCTION

INTRODUCTION

Mosquitoes casue great suffering and economic loss because of their blood sucking habits. They are vectors of malaria, yellow fever, dengue as well as filariasis, which are considered most, four important diseases of tropical and subtropical parts of the world today.

Since mosquitoes play an important role in the transmission of encephalitis, discomfort and misery by their bites, a great expansion in mosquito control activities has been recorded. Among other genera, culex mosquitoes are increasing in Africa as urbanization provides favourable habitats and sanitary measures are disregarded. Culex mosquitoes are typically feeders on bird blood. They are important vectors of both arboviruses and avian Malaria. On the other hand, Culex pipiens (L.) and Culex fatigans (Weid.), which widely found in Africa, bite man for blood meals. However, under favaruable conditions, such mosquitoes invade houses in large numbers and become a considerable menace.

Furthermore, <u>C. pipiens</u> and <u>C. p. quinquefasciatus</u> may serve as intermediate hosts of the human filarial

worm <u>Wuchereria</u> <u>bancrofti</u>, while <u>C. fatigans</u> is also considered a potential vector of yellow fever.

For an attempt to control such vectors, pesticides have been widely used and extensively produced. Accordingly the large scale use of toxicants against several pests of either agricultural or medical importance, has frequently led to the development of strains of insects resistant to many insecticides which were designed for their eradication. It is in the field of public health that insecticide resistance has become a serious problem.

Trials to study the nature of resistance to organophosphorus and synthetic pyrethroids insecticides in <u>Culex pipiens</u> (L.), the important vector of filariasis and Reft Valley Fever (RVF) in Egypt, was thought to be an essential contribution towards their effective control. The present investigation also attempted to study the resistance spectrum to various insecticides in malathion resistant <u>Culex pipiens</u> larvae aiming to achieve the appropriate chemical afor controlling this insect under field conditions.

In addition, the study of Acetylcholinesterase [AchE] activity in the insect has received special attention since it is thought that it is the target of organophosphorus and carbamate insecticitdes (O'Brien, 1967). It is generally accepted that the toxic effect of organophosphates in insects is due to their ability to inhibit ChE enzyme with subsequent disruption of nervous activity.

The present study was aimed to study the development of resistance in <u>Culex pipiens</u> larvae for both malathion and permethrin insecticides recommended by the world health organization because of their role in mosquito control in public health in Egypt.

To accomplish such goal the following points were studied:

1 - The rate of development of resistance to different recommended organophosphourus and synthetic pyrethroid insecticides.