PHYSICO - CHEMICAL STUDIES ON SOME METAL COMPLEXES OF HETEROCYCLIC CONTAINING ORGANIC LIGANDS

A THESIS

Submitted to the Faculty of Science, Ain Shams University for the Degree of Ph. D. (CHEMISTRY)

Вy

ABDEL MOHSEN MOHAMED EL- KORITY

الغنائق

(M. Sc. Inorganic Chemistry, Cairo University 1981)

541, 39 A Late Prof. Dr.

SUPERVISED BY

Deaf De

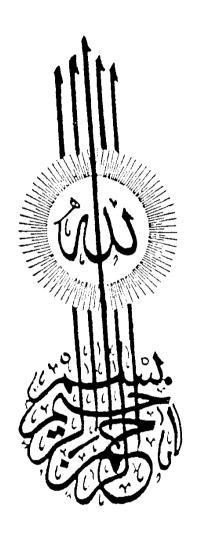
SAAD S. M. HASSAN

ALI EL-ATTRASH

Professor of Inorganic and Nuclear Chemistry and Vice Dean of Faculty of Science, Ain Shams University Professor of Analytical Chemistry, Faculty of Science, Ain Shams University

Prof. Dr.

MORSY M. ABOU SEKKINA


Professor of Physical, Solid State and Inorganic Nuclear Chemistry, Faculty of Science, Tanta University

(1991)

ALY EL- DISOUKY ALY

Professor of Inorganic and Analytical Chemistry, Faculty of Science, Alexandria University

TO MY BELOVED PARENTS & MY WIFE

DEDICATION

The work of the present thesis is dedicated to our great late Professor Dr. Ali M. El-Attrach, Professor of Inorganic and Nuclear Chemistry, and Vice Dean of the Faculty of Science, Ain Shams University, Egypt. Prof. Dr. Ali El-Attrach's interest, guidance and encouragement are still feeling throughout the present work. His spirit is still amongest course always hold his human kindness, morality and scientific attitudes forever.

Supervisors and the candidate

ACKNOWLEDGEMENT

First of all, praise to GOD the lord of the world by whose grase this work has been completed.

The author wishes to thank heartily the late Prof. Dr. Ali M. El-Attrach Vice Dean of Faculty of Science, and Prof. of Inorganic and Nuclear Chemistry and to Prof. Dr. S. M. Hassan Prof. of Analytical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, Egypt for their valuable advice, support and encouragement.

I wish to express heartily my deepest gratitude and appreciation to Prof. Dr. Morsy M. Abou Sekkina, Prof. of Physical, Solid State and Inorganic and Nuclear Chemistry, Faculty of Science, Tanta University, Egypt and Prof. Dr. Ali El-Dissouky, Prof. of Inorganic Chemistry, Faculty of Science, Alexandria University, Egypt for their suggesting the point of research program of the present thesis, supervision on all steps of the research work, their valuable guidance, fruitful discussion and concluding remarks, from the beginning to the final stages of the thesis in its present form.

Finally, the author wishes to thank Chemistry Department in the United Arab Emirates University for Laboratory and Technition facilities offered.

CONTENTS

	Page
SUMMARY AND CONCLUDING REMARKS	i
CHAPTER I: INTRODUCTION	1
Aim of the Present Investigation	41
CHAPTER II: Experimental	
1.1- Preparation of (4,5-dimethylpyrazolyl) aldazine,	
(DMPA)	42
1.2- Preparation of copper(II) complexes	42
1.3- Preparation of nickel(II) complexes	46
2.1- Preparation of phenyl-2-picolylketone-2- pyridyl-	
hydrazone (PPKPyH)	50
2.2- Preparation of cobalt(II) complexes	51
2.3- Preparation of mickel(II) complexes	53
2.4- Preparation of iron(III) complexes	55
Metal analyses	55
Physical measurements	56
CHAPTER III: Results and Discussion	
Ligating properties of (4,5-dimethylpyrazolyl)	
aldazine (DMPA)	65
1. Copper(II) complexes	65
2. Nickel(II) complexes	128
Ligating properties of phenyl-2-picolylketone-2-	
pyridylhydrazone (PPKPyH)	

1. Cobalt(II) complexes	155
2. Nickel(II) complexes	178
Thermogravimetric analysis of PPKPyH and some of	
its metal complexes	201
- X-ray analysis for PPKPyH and some of its metal	
complexes before and after γ -irradiation	210
- Electrical conductivity for PPKPyH and some of	
its metal complexes	219
- Effect of temperature on the electrical conducti-	
vity	219
- Effect of γ-irradiation on the electrical con-	
ductivity	230
	D.C.C
REFERENCES	266

ARABIC SUMMARY.

LIST OF TABLES

able No:	Content	Page
1	Analytical data, colour and molar conductivity for DMPA and its copper (II) complexes	61
2	Analytical data, colour and molar conductivity for Ni (II) complexes of AMPA	62
3	Analytical data, colour and melting points for PPKPyH and its cobalt (II) complexes.	63
4	Analytical data, colour and melting points for iron (III) complexes of PPKPyH	64
5	Analytical data, colour and melting points for nickel (II) complexes of PPKPyH	64
6	Characteristic i.r. bands (ν $C\overline{m}^1$) and their assignments for AMPA and its copper(II) complexes.	69
7	i.r. bands and their assignments for the polyatomic anions and water for copper (II) complexes of DMPA.	70
8	Characteristic i.r. bands (ν Cm 1) and their assignments for nickel (II) complexes of DMPA	71
9	i.r. bands and their assignments for the polyatomic anions and water for nickel (II) complexes of DMPA.	72
10	Room temperature magnetic moments (B.M.) and electronic spectral data for the mononuclear copper (II) complexes of DMPA	79

11	ESR data for the mononuclear copper (II) complexes of DMPA	82
12	The variable temperatur magnetic susceptibility of [(DMPA)CuCl] (BF $_4$). H $_2$ O	99
13	The variable temperature magnetic susceptibility of $[(DMPA)CuBr]$ (BF_4) . $2H_2O$	100
14	Room temperature magnetic moments (B.M.) and electronic spectral data for the polynuclear copper (II) complexes of DMPA.	114
15	The variable temperature magnetic susceptibility for $[(DMPA)_2^{Cu}_2^{Cl}_2^{(H_2^{O)}}]$ Cl_2^{Cl} . EtOH.	122
16	Room temperature magnetic moments (B.M.) and electronic spectral data for the nickel (II) complexes of DMPA.	138
17	Characteristic i.r. bands for PPKPyH and its cobalt (II) compounds	152
18	Characteristic i.r. bands for nickel (II) complexes of PPKPyH	153
19	Main i.r. bands of the polyatomic anions and water for PPKPyH complexes	154
20	Room temperature magnetic moments (B.M.) and electronic spectral data for cobalt (II) complexes of PPKPyH	157
21	Magnetic moments (B.M.) and electronic spectral data for $[(PPKPyH)_2 Co(NCS)_2]$. 2 $^{H}2^{O}$	170

22	Room temperature magnetic moments (B.M.) and electronic spectral data for nitrato and protonated ligand cobalt (II) complexes	170
23	Room temperature magnetic moments (B.M.) and electronic spectral data for [(PPKPyH)NiCl ₂].H ₂ O complex and its derivatives	180
24	Room temperature magnetic moments (B.M.) and electronic spectral data for aquo, thiocyanato and nitrate nickel (II) complexes of PPKPyH.	193
25	Spectral parameters $(C\overline{m}^1)$ of aquo, thiocyanato and nitrate nickel (II) complexes of PPKPyH.	193
26	The thermal behaviour for PPKPyH complexes	202
27	The thermochemical kinetic data for	205
28	The thermochemical kinetic data for $[(PPKPyH)NiCl_2] \cdot \frac{1}{2} H_2^0$	206
29	The obtained activation energy ΔE and order of reaction of the diffrential thermal analysis curves for [(PPKPyH)CoCl ₂]. $\frac{1}{2}$ H ₂ O and [(PPKPyH)NiCl ₂]. H ₂ O	209
30	The interplanar spacings $d(A)$, relative intensities (I/I_{\circ}) and peak assignme nts for the Cu-K α , X-ray diffraction patterns for (PPKPyH)	215
31	The interplanar spacings $d(A)$, relative intensities (I/I_{\circ}) and peak assignments for the Cu-K α -, X-ray diffraction patterns for (PPKPyH) after γ -irradiation	216

32	The interplanar spacings $d(A)$, relative	217
	intensities (I/I $_{\circ}$) and peak assignments for the	
	Cu-K α -, X-ray diffraction patterns for	
	[(PPKPyH)FeCl ₃]. H_2O before $\hat{\sigma}$ -irradiation	
33	The interplanar spacings $d(A)$, relative	218
	intensities (I/I $_{\circ}$) and peak assignments for the	
	Cu-K α -, X-ray diffraction patterns for	
	[PPKPyH)FeCl ₃].H ₂ O after γ -irradiation	
34	The variation of the electrical conductivity of	220
	PPKPyH organic ligand with the reciprocal of the	
	absolute temperature before γ -irradiation	
35	The variation of the electrical conductivity of	221
	[(PPKPyH)FeCl $_3$]. H $_2$ O with the reciprocal of	
	absolute temperature before γ -irradiation	
36	The variation of the electrical conductivity of	222
	[(PPKPyH)CoCl ₂]. $\frac{1}{2}$ H ₂ O with the reciprocal of	
	absolute temperature before 3-irradiation	
37	The variation of the electrical conductivity of	223
J.	[(PPKPyH)NiCl ₂].H ₂ O with the reciprocal of	
	absolute temperature before γ -irradiation	
2.0	mi conductivity of	224
38	The variation of the electrical conductivity of	227
	[(PPKPyH)CoBr ₂] with the reciprocal of absolute	
	temperature before γ -irradiation	
39	The variation of the electrical conductivity of	233
	[($PPKPyH$)FeCl ₃]. H_2O with the reciprocal of	
	absolute temperature after γ-irradiation	

40	The variation of the electrical conductivity of $[(PPKKPyH)CoCl_2] \cdot \frac{1}{2} H_2O$ with the reciprocal of absolute temperature after γ -irradiation	232
41	The variation of the electrical conductivity of [(PPKPyH)NiCl ₂] with the reciprocal of absolute temperature before γ -irradiation	233
42	The variation of the electrical conductivity of $[(PPKPyH)CoBr_2]$ with the reciprocal of absolute temperature after γ -irradiation	234
43	The obtained values of intrinsic activation energy $\Delta E(eV)$, energy gap Eg (eV)and conductivity (log σ 50°C) for PPKPyH organic ligand and its iron, cobalt and nickel complexes before and after γ -irradiation	236
44	The conductivity (log σ 50 C), ionic radii relationship for iron, cobalt and nickel complexes of PPKPyH	236
45	The obtained values of intrinsic activation energy $\Delta E(eV)$ energy gap Eg (eV) and ionic radii (nm) for iron, cobalt and nickel complexes of PPKPyH before and after gamma irradiation	237
46	I-V characteristics of PPKPyH organic ligand at different temperatures before γ -irradiation.	245
47	I-V characteristics of $[(PPKPyH)FeCl_3]$. H_2O at different temperatures before γ -irradiation	246
48	I-V characteristics of [(PPKPyH)FeCl $_3$]. H $_2$ O at different temperatures after γ -irradiation	247

49	I-V characteristics of [(PPKPyH)CoCl $_2$]. $\frac{1}{2}$ H $_2$ O complex at different temperatures before γ -irradiation	248
50	I-V characteristics of [(PPKPyH)CoCl $_2$]. $2^{\rm H}2^{\rm O}$ complex at different temperatures after γ -irradiation	249
51	I-V characteristics of [(PPKPyH)CoBr ₂] at different temperatures before γ -irradiation	250
52	I-V characteristics of [(PPKPyH)NiCl]. $\rm H_2O$ at different temperatures before γ -irradiation absolute temperature before γ -irradiation	251

LIST OF FIGURES

Fig		Page
1	The different expected behaviour of the thermogravimetric analysis curves.	- 34
2	Electronic spectra of [Cu(DMPA)Cl ₂]. EtOH: (a) Nujol mull (b) chloroform saturated solution	. 77
3	Electronic spectra of [Cu(DMPA)Br ₂], $\frac{1}{2}$ EtOH: (a) Nujol mull (b) chloroform saturated solution	78
4	X-band ESR spectra of [Cu(DMPA)Cl ₂]. EtOH: (a) Polycrystalline sample at room temperature. (b) CH ₂ Cl ₂ solution at room temperature.	80
5	X-band ESR spectra of [Cu(DMPA)Br ₂]. $\frac{1}{2}$ EtOH: (a) Polycrystalline sample at room temperature (b) CH ₂ Cl ₂ solution at room temperature	81
6	Calculated electronic transition energies of [Cu(DMPA)Cl ₂]. EtOH as a function of α_4 Crystal field for N. a, b, c and d refer to the $dx^2-y^2 \leftarrow dxy$, $dx^2-y^2 \leftarrow dxz$, $dx^2-y^2 \leftarrow dyz$ and $dx^2-y^2 \leftarrow dz^2$ excitations, respectively.	87
7	Calculated electronic transition energies of $[Cu(DMPA)Br_2]$. $\frac{1}{2}$ EtOH as a function of α_4 Crystal field for N. a, b, c and d refer to the $dx^2y^2 \leftarrow dxy$, $dx^2-y^2 \leftarrow dxz$, $dx^2-y^2 \leftarrow dyz$ and $dx^2-y^2 \leftarrow dz^2$ excitations, respectively.	88