CYCLIC VOLTAMMETRIC STUDIES ON THE LEAD ELECTRODE IN SOME AQUEOUS SOLUTIONS

A Thesis Presented By

Abd El-Kader Saty Mohamed Osman

B. Sc., M. Sc.

وبنالت

541.372 A.S

For The Award Of The Degree

Of

PHILOSOPHER DOCTOR OF SCIENCE

" Chemistry "

37297

Department Of Chemistry

Faculty of Science - Ain Shams University

1991

Approval Sheet

Of The Thesis Entitled

" CYCLIC VOLTAMMETRIC STUDIES ON THE LEAD ELECTRODE IN SOME AQUEOUS SOLUTIONS ".

Supervisors:

Prof. Dr. S . S . Abd El Rehim

Prof. Dr. S. M. Abd El Wahaab

Prof. Dr. A. M. Abd El - Halim

Ass. Prof. Dr. M . H . Fawzy

Signature

5. M. Abdel kiskual:

- Hittali

Credit

Prof. Dr. N. M. Guindy

Head of Chemistry Department

ACKNOWLEDGEMENT

The author would like to express his thanks and gratitude to Prof. Dr. S. S. Abd El Rehim and Prof. Dr. S. M. Abd El Wahaab, for their kind help and encouragement.

The author is greatly indebted to Prof. Dr. A. M. Abd El - Halim for suggesting the present work and for his valuable guidance, continuous interest and discussion without which the present work could not have been conducted.

The author wishes to express his thanks and gratitude to Ass. Prof. Dr. M. H. Fawzy for his kind help and interest.

Many thanks to Prof. Dr. N. M. Guindy, Head of the Department of Chemistry and to the staff Members of the Chemistry Department for the concern they paid to this thesis.

CONTENTS

	· — · · =	
AIM .	AND SCOPE OF THE PRESENT WORK	Page
1. IN	TRODUCTION	
1.2.b. 1.3. 1.4. 1.4.a. 1.4.b. 1.5. 1.6. 1.6.2. 1.6.2.a. 1.6.2.b.	The passivation phenomenon Anodic behaviour of the lead electrode In HCl solutions In NaCl solutions The cyclic voltammetry technique Cyclic voltammetric studies on the lead electrode In HCl solutions In NaCl solutions Surface morphology Sea - Water activated batteries Types of Sea - Water batteries Construction of Sea - Water batteries Anode (negative plate) Cathode (positive plate) Electrolyte	1 4 4 5 6 8 9 14 15 19 24 25 26 27 30
2. EXF	PERIMENTAL DETAILS	
2.1.1.a. 2.1.1.b. 2.1.1.c. 2.1.2. 2.1.3. 2.1.4. 2.1.5.	Linear sweep and cyclic voltammetry The electrodes The working electrode The counter electrode The reference electrode The solutions The electrolytic cell The procedure of measurement Surface morphology and X - ray diffractometry	32 32 32 32 33 33 34 34 34
2.2.	Sea - water activated batteries	3 7

	_
2.2.1 The encorement and the formed G.	Page
2.2.1. The encasement and the forced - flow system2.2.2. The cathodes	37
2.2.3. The anodes	38
	38
2.2.4. The procedure of measurement	39
3. RESULTS AND DISCUSSION	
3.1. Behaviour of The Lead Electrode	
in Aqueous HCl Solutions	41
3.1.1. Linear sweep voltammetry	41
3.1.2. Cyclic voltammetry	45
3.1.2.a. Effect of the potential scanning range	45
3.1.2.b. Effect of the potential sweeping rate	47
3.1.2.c. Effect of the holding time	48
3.1.2.d. Effect of the number of repeated cycles	49
3.1.2.e. Effect of the mode of repeated cycling	53
3.1.3. Surface morphology	54
3.1.3.a. Effect of HCl concentration	55
3.1.3.b. Effect of the potential scanning range	55
3.1.3.c. Effect of the potential sweeping rate	56
3.1.3.d. Effect of the holding time	5 7
3.1.3.e. Effect of the number of repeated cycles	58
3.1.3.f. Effect of the mode of repeated cycling	59
3.1.4. X - ray diffractometry	60
3.2. Behaviour of The Lead Electrode	
in Aqueous NaCl Solutions	60
3.2.1. Linear sweep voltammetry	62 62
3.2.1.a. Effect of NaCl concentration	62
3.2.1.b. Effect of the pH	65
3.2.2. Cyclic voltammetry	66
3.2.2.a. Effect of the potential scanning range	66
3.2.2.b. Effect of the potential sweeping rate	67
L D	07

	Page
3.2.2.c. Effect of the number of repeated cycles	69
3.2.2.d. Effect of the mode of repeated cycling	71
3.2.3. Surface morphology	72
3.2.3.a. Effect of NaCl concentration	72
3.2.3.b. Effect of the pH	73
3.2.3.c. Effect of the potential scanning range	73
3.2.3.d. Effect of the potential sweeping rate	74
3.2.3.e. Effect of the number of repeated cycles	75
3.2.3.f. Effect of the mode of repeated cycling	76
3.2.4. X - ray diffractometry	77
3.3. Behaviour of The Lead Electrode	
in Aqueous NaBr Solutions	79
3.3.1. Linear sweep voltammetry	79
3.3.2. Cyclic voltammetry	82
3.3.2.a. Effect of the potential scanning range	82
3.3.2.b. Effect of the potential sweeping rate	83
3.3.2.c. Effect of the number of repeated cycles	84
3.3.2.d. Effect of the mode of repeated cycling	87
3.3.3. Surface morphology	88
3.3.3.a. Effect of NaBr concentration	88
3.3.3.b. Effect of the potential scanning range	89
3.3.3.2. Effect of the potential sweeping rate	89
3.3.3.d. Effect of the number of repeated cycles	90
3.3.3.e. Effect of the mode of repeated cycling	91
3.3.4. X - ray diffractometry	93
3.4. Behaviour of The Lead Electrode	
in Aqueous NaI Solutions	95
3.4.1. Cyclic voltammetry	95
3.4.1.a. Effect of NaI concentration	95
3.4.1.b. Effect of the potential scanning range	97
3.4.1.c. Effect of the potential sweeping rate	98

		Page	
3.4.1.d.	Effect of the number of repeated cycles	100	
3.4.1.e.	Effect of the mode of repeated cycling	101	
3.4.2.	Surface morphology	102	
3.4.2.a.	Effect of NaI concentration	102	
3.4.2.b.	Effect of the potential scanning range	103	
3.4.2.c.	Effect of the potential sweeping rate	104	
3.4.2.d.	Effect of the mode of repeated cycling	105	
3.4.3.	X - ray diffractometry	106	
3.5.	Testing of The Pb / PbCl ₂ Electrodes Prepared by Cyclic Voltammetry as Cathodes in Sea		
	- Water Activated Batteries	109	
3.5.1.	Voltage - time curves	109	
3.5.2.	Current - time curves	112	
SUMMARY AND CONCLUSIONS		114	
REF	ERENCES	121	
ARARIC SUMMARY			

AIM AND SCOPE OF THE PRESENT WORK

AIM AND SCOPE OF THE PRESENT WORK

The Ag / AgCl electrode is used as an effective cathode in sea - water activated batteries which employ a Mg - alloy anode . In spite of the high cost of silver and its irrecoverable loss during use , non - silver electrodes were recently developed . Particularly , the Pb / PbCl2 electrode is recommended as an economical substitute for the Ag / AgCl electrode . In practice , the Pb / PbCl2 electrode is prepared by various means such as hot - pressing , cold - pressing and fusion casting techniques . In fact , the performance characteristics of the substitute electrode , prepared by any of these methods , are still inferior to those of the Ag / AgCl electrode . This may be due partially to the specific properties of PbCl2 and partially to the method of its preparation .

On the other hand, the basic electrochemistry of the lead electrode in aqueous HCl and NaCl solutions has been extensively studied by galvanostatic and potentiostatic techniques but investigated to a minor extent by cyclic voltammetry. In conclusion, the results of these investigations showed that the overall anodic reaction leads to the formation of a passivating thin layer of PbCl₂ on the surface of the lead anode. In addition, a feature worthy of attention is that sea - water activated batteries are generally subjected to repeated cycles of charge and discharge analogous to those occur in a cyclic voltammetry experiment.

For these reasons , the first and second parts of the present thesis are devoted to investigate , in more details , the cyclic voltammetric behaviour of the lead electrode in aqueous HCl and NaCl solutions , respectively . Actually , some developed types of measurements have been performed in this investigation . Moreover , examination of the as formed PbCl2 surface - layers by scanning electron microscopy and X - ray diffraction analysis has been carried out . Accordingly , the present study could be effective in thickening of the passivating PbCl2 surface - layer and hence may lead to exploring a new route for electrochemical preparation of an improved Pb / PbCl2 electrode .

Unfortunately , the anodic behaviour of the lead electrode in aqueous bromide and iodide solutions has not received adequate attention . However , very few literature have been published in this respect . Therefore , the third and fourth parts of the present thesis are directed to throw more light onto the cyclic voltammetric behaviour of the lead electrode in aqueous NaBr and NaI solutions , respectively . In addition , the produced PbBr2 and Pbl2 surface - layers were investigated by electron microscopy and identified by X - ray diffraction analysis . These two parts of the thesis were undertaken to achieve the following two purposes . Firstly , to integrate our intensive study on the cyclic voltammetric behaviour of the lead electrode in the conventional aqueous halide (chloride , bromide and iodide) solutions . Secondly , to provide some original data concerning preparation of the Pb / PbBr2 and Pb / PbI2 electrodes by electrochemical means . The latter data may be helpful in development of the less common Pb / PbBr2 - Br2 and Pb / PbI2 - Mg

accumulators.

The fifth part of the thesis deals with application of the $Pb / PbCl_2$ electrode, prepared by cyclic voltammetry under selected conditions, in a pilot sea- water activated cell (or battery). The discharge curves of the cell have been examined as a function of some operating variables. Accordingly, the performance characteristics of the cell have been discussed and evaluated.

CHAPTER - 1

INTRODUCTION

1.INTRODUCTION

1.1 The passivation phenomenon

Passivation is an unusual phenomenon observed during the corrosion of certain metals and alloys. It can be defined as a loss of chemical reactivity under certain environmental conditions. More specifically, the term is applied to the sometimes observed transformation of a corroding unstable surface to a passive stable surface by the superimposition of a double - layer field which would accelerate the metal dissolution reaction rather than hinder it, i.e. by a shift of the electrode potential in the positive direction. This phenomenon of enforced passivation [1] seems unnatural or at least unexpected. Passivation results as a process of formation of an insoluble oxide, hydroxide or solid salt in contact with the metal. Protection of the metal will be complete where the film of deposit is absolutely adherent and non-porous.

The behaviour of metal anodes at which an insoluble layer is formed has been discussed in detail by Müller [2]. He suggested that crystals formed by supersaturation of the solution near the anode grew sideways of the surface during the low overpotential passivation period. When this covering was completed there was an abrupt rise in the potential of the electrode due to the increased current density in the pores of the salt layer leading to the production of higher valency - metal compounds and / or oxygen evolution.

2

The variations in the passivation time (at a certain potential) could then be ascribed to differing thickness of the layer at the moment of completion, and also to variation in the amount of lead salts lost by convection during the formation of the thicker layers.

The relation between the applied current density (j) and the time of passivation (t_p) was also studied by Müller and Machu [3] and Kabanov [4] and the following relation was found to apply:

$$j^a$$
 . t_p = constant

If the above relation is written as:

$$log t_p = constant - a log j$$

it is evident that the plot of $\log\,t_p\,$ against $\,\log\,j\,$ should be linear with a slope equals - a .

The electrochemical behaviour of an active - passive metal renders a reasonable explanation for the formation of a passive surface layer [5]. The electrode potential - current density (E-j) curves for an active - passive metal show an interesting pattern as can be seen in Fig. 1. When the potential is shifted starting from the corrosion potential E_{corr} (the zero current potential), the dissolution current increases. The metal ions pass into the solution according to the reaction: