10.00/4

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

INVESTIGATION AND DESIGN OF MITER-TYPE LOCK GATES

Thesis submitted in the partial fulfillment of the requirements for the degree of Master of Science

Ву

KHALED ABDELFATTAH KHEIRELDIN

(B.Sc Eng.)

Supervised by

Prof. Dr. MOHAMED W. ABDELSALAM

DR. ABDELKAWI A. KHALIFA

DR. ABDELRAHIM K. DESSOUKI

29532

Ain Shams University , Faculty of Engineering

1989

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to his supervisor Prof. Dr. MOHAMED W. ABDELSALAM for his keen interest , constant encouragement , and valuable guidance during the course of the work described in this thesis. The author also greatly acknowledges the valuable discussions and useful suggestions presented by Dr. ABDELKAWI A. KHALIFA and Dr. ABDELRAHIM K. DESSOUKI.

My sincere thanks are also due to Prof. Dr. MOHAMED M. GASSER, Director of the Hydraulics and Sedimentation Institute for his continuous encouragement and facilities presented during the execution of this work.

Thanks are also expressed to Prof. Dr. MOHAMED ELNIAZI, head of the Hydraulics and Irrigation Department, Ain Shams University, for all facilities presented by the department.

A great deal of assistance has been provided by the Irrigation Sector at El-Gharbia Governorate which is greatly acknowledged.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering.

The work included in this thesis was carried out by the author in the Department of Hydraulics and Irrigation , Ain Shams University, from October 1986 to April 1989.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date :

Signature :

Name : KHALED ABDELFATTAH KHEIRELDIN

EXAMINERS COMMITTEE

Name, Title & Affiliation

Signature

1- PROF. DR. MAHMOUD ABDELHALIM ABUZEID,

Chairman of the Water Research Center,

Ministry of Public Works & Water Resources.

2- PROF. DR. MOHAMED ELNIAZI HAMMAD,

Head of the Hydraulics & Irrigation Department,

Faculty of Engineering, Ain Shams University.

3- PROF. DR. MOHAMED WAFAIE ABDELSALAM,

Professor of Irrigation Design and Hydraulics,

Faculty of Engineering, Ain Shams University.

ABSTRACT

The present thesis is planned to provide more detailed information on the miter type lock gates analysis. Moreover, the study deals with the effect of the drawbacks during operation or execution on the stresses and deformations of the gate. The classical analysis can not give a deep view for these effects. So, a theoretical analysis applying the finite element method (using the SAP80 Program) has been applied to some gates with different dimensions and properties. Moreover, this finite element model is verified in order to check it against real data from the field. As a conclusion from the analysis of results obtained from the finite element model, the major reason of the gate tilting and failure is that the miter post is not completely coinciding for the two gates.

In addition, the finite element analysis is applied to the miter type lock gate for the new Naga Hammadi lock which is being currently erected at the Upper Egypt. This gate will be the highest miter gate in Egypt. The effect of the drawbacks which, may occur during the execution or operation of this gate, on the stresses at the different elements of the gate are studied.

CONTENTS

CHAPTER I	INTRODUCTION.	PAGE	
1.1	Definition of the Problem.	• • • • • • • • • • • • • • • • • • • •	2
1.2	The Present Investigation.	•••••	3
1.3	Thesis Contents.	• • • • • • • • • • • • • • • • • • • •	4
CHAPTER II	LITERATURE REVIEW.		
2.1	Introduction.	•••••	9
2.2	Anatomy of Different Types of Lock		
	Gates.		9
2.3	Basic Design Requirements.		13
2.4	Operating Force on Miter Type Lock		
	Gates.		18
CHAPTER I	III THEORETICAL APPROACH.		
3.1	General.		40
3.2	Assemblage of Discrete Elements.		40
3.3	Elastic Continue.		41
3.4	Types of Finite Elements.		42
3.5	Division of The Domain into Elements.		42
3.6	Linear Interpolation Polynomial.		43
CHAPTER :	IV THE FINITE ELEMENT MODEL.		
4.1	General.		48
4.2	Data Required to Describe the		

	Structure.	48
4.3	Finite Element Models for Gates.	49
CHAPTER V	EXPERIMENTAL INVESTIGATION.	
5.1	General.	68
5.2	The Mechanical Method.	68
5.3	The Electrical Method.	70
5.4	Finite Element Model Verification.	7
CHAPTER V	I FINITE ELEMENT MODEL APPLICATION	NS.
A-	Finite Element Model Application For	r the Koddaba
	Miter Type lock Gate.	
6.1	Introduction.	8
6.2	Classical Analysis for the Gate.	8
6.3	Finite Element Model for Koddaba Ga	t e 9
В-	Finite Element Model Application Fo	r the Existing
	Naga Hammadi Miter Type Lock Gate.	
6.4	Introduction.	18
6.5	Finite Element Model for the E	xisting Naga
	Hammadi Gate.	1ô
C-	Finite Element Model Application fo	or the New Naga
	Hammadi Miter Type Lock Gate.	
6.6	Introduction.	19
6.7	Design of the Gate.	19
6.8	Finite Element Model for the New	Naga Hammadi

	Gate	e. `		7
6.9	Ana.	lysis of Results for Optimum Bounda	ry	
	Cond	ditions.	19	37
6.10	Mor	e Study on the New Gate.	20)(
6.11	Ana:	lysis of Results.	20)]
6.12	Mod	ified Design of the Gate.	21	Ll
CHAPTER	VII	CONCLUSIONS AND RECOMMENDATIONS		
7.1	Con	clusions.	28	36
7.2	Rec	ommendations.	28	3 9
APPENDIX	A:	References.	25	3]
APPENDIX	B:	Corrosion Protection for Gates.		97

Figure	List of Figures		Page
1.1	The Miter Gate Under Operation.		 6
1.2	A Barge Entering the Lock.		. 5
1.3	The Two Leaves After Closing.		, p
1.4	The Clearance Between the Two Leaves.		7
2.1	Different Steps of the Operation of a Lock.		
2.2	Different Anchorages for the Miter Gate.		4-4
2.3	Three Hinged Arc Action.		£.)
2.4	Sector Gate.		. 20
2.5	Rolling Gate.	• • • • • • • • •	
2.6	Falling Gate.	• • • • • • • • •	ب
2.7	Tainter Gate.	* * * * * * * * *	
2.8	Vertical lift Gate.	• • • • • • • • •	
2.9	Pintel Setting.		_
2.10			
2.11	Diagonal Member Design.	• • • • • • • •	. 31
2.11	Hydraulic Resistance to Operation of Mite	r	
2.12	Type Lock Gates [15].	• • • • • • • •	• 32
2.12	Effect of the Submergence Variation on the		
2 2 2	Hydraulic Resistance to Operation [15].	• • • • • • •	• 33
2.13	Effect of the Operating Speed on the hydr	aulic	
2 2 4	Resistance to Operation [15].	• • • • • • • •	. 34
2.14	Effect of the Gate Bottom Clearance on the		
	Hydraulic Resistance to Operation [15].		. 35
2.15	Effect of Lock Chamber Length on the Hydra	ulic	_
	Resistance to Operation [15].		. 36
2.16	Effect of the Nonsynchronous Operation	on the	
	Hydraulic Resistance to Operation [15].		. 37
2.17	Effect of the Change in the Leaf Weight	on the	
	Hydraulic Resistance to Operation [15].	• • • • • • • •	. 38
3.1	Some Two- Dimensional Finite Elements.	• • • • • • • •	
3.2	Some three-dimensional Finite Elements.	• • • • • • • •	
4.1	Finite Element Mesh for the First Model.	*******	
4.2	Finite Element Mesh for the Second Model.	• • • • • • • •	ز د
4.3	Finite Element Mesh for the Third Model.	• • • • • • • •	
4.4	Finite Element Mesh for the Fourth Model.	• • • • • • • •	62
4.5	Finite Element Mesh for the Fifth Model.	• • • • • • • •	
4.6	Finite Element Mesh for the Sixth Model.	• • • • • • • • •	. 54
4.7	Finite Element Mesh for the Seventh Model.		. 57
4.8	Finite Element Mesh for the Eighth Model.	* * * * * * * * * *	
5.1	Upstream View for the Downstream Gate.		***
5.2	Downstream View for the Downstream Gate.	* * * * * * * * *	$\frac{7}{4}$
5.3	The Heel-Post of the Koddaba Gate.	• • • • • • •	75
5.4	The Top Quion of the Gate.		• 12 75
5.5	The Mechanical Strain Gauge.	• • • • • • • •	. 75
5.6	During the Strain Measuring at the Koddaba	* * * * * * * * * *	. 76
3.0	Gate.		77
5.7		• • • • • • •	. 76
5.8.a	The Electrical Strain Gauge.	• • • • • • •	. 77
J.0.a	Positions of the Measured Points in the		
5 0 h	Mechanical Measuring.	• • • • • • • •	. 78
5.8.b	Positions of the Measured Points in the		
E 0	Electrical Measuring.		. 73
5.9	Wheatstone Bridge.	• • • • • • • •	. 79
5.10.a	Stresses Due to the Experimental Study on		
	the Upstream Side of the Selected Girder.		. 80
5.10.b	Stresses Due to the Experimental Study		-

	on the Downstream Side of the Selected		
	Girder.		31
5.11	Finite Element Mesh for the Downstream		
- aa	Koddaba Lock Gate.		82
5.12.a	Stresses Due to Theoretical Study on the		
5.12.b	Upstream Side of the Selected Girder.	• • • • • • • • •	83
J.12.D	Stresses due to theoretical study on the Downstream Side of the Selected Girder.		34
5.13.a	A Comparison Between the Experimental	• • • • • • • •	54
	and the Theoretical Stresses on the Upstream		
	Side of the Selected Girder.		85
5.13.b	A Comparison Between the Experimental and		
	the Theoretical Stresses on the Downstream		
	Side of the Selected Girder.		86
6.1 6.2	General Layout of the Koddaba Lock.	• • • • • • • • •	113
0.2	Upstream View for the Downstream Gate During the Repair.		י בי
6.3	Downstream View for the Downstream Gate		114
0.10	During the Repair.		114
6.4	Failure in Some Members of the Gate.		115
6.5	Rust on Several Elements of the Gate.		115
6.6	Anatomy of the Downstream Koddaba Gate.		116
6.8	Finite Element Mesh for the Downstream		
6.9	Koddaba Gate.	• • • • • • • • •	117
6.9	Studied Cases of Loading and Boundary Conditions for the Koddaba Gate.		
6.10	Longitudinal Stresses on the (U.S.) Side		118
0.10	for Case #1.		119
6.11	Longitudinal Stresses on the (D.S.) Side	• • • • • • • • •	ر ساجد
	for Case #1.		120
6.12	Transverse Stresses on the (U.S.) Side		
	for Case #1.		121
6.13	Transverse Stresses on the (D.S.) Side		7.00
6.14	for Case #1. Shear Stresses on the (U.S.) Side	• • • • • • • • •	122
0.14	for Case #1.		123
6.15	Shear Stresses on the (D.S.) Side	• • • • • • • • •	
	for Case #1.		124
6.16	Deformations of Different Girders		
	for Case #1.		125
6.17	Longitudinal Stresses on the (U.S.) Side		7 ^ /
<i>6</i> 10	for Case #2.	• • • • • • • • •	126
6.18	Longitudinal Stresses on the (D.S.) Side for Case #2.		127
6.19	Transverse Stresses on the (U.S.) Side	• • • • • • • • •	
	for Case #2.		128
6.20	Transverse Stresses on the (D.S.) Side		
	for Case #2.		129
6.2 2	Shear Stresses on the (U.S.) Side		5 7 .
C 22	for Case #2.		130
6.22	Shear Stresses on the (D.S.) Side for Case #2.		131
6.23	Deformations of Different Girders		- /-
3 - 2 3	for Case #2.		133
6.24	Longitudinal Stresses on the (U.S.) Side		
	for Case #3.		177

- vii - 💉

6.25	Longitudinal Stresses on the (D.S.) Side		
6.26	for Case #3. Transverse Stresses on the (U.S.) Side	• • • • • • • •	134
	for Case #3.		135
6.27	Transverse Stresses on the (D.S.) Side		
6.28	for Case #3. Shear Stresses on the (U.S.) Side	• • • • • • • • •	136
0.20	fra 0 20		137
6.29	Shear Stresses on the (D.S.) Side		
6.30	for Case #3.		138
0.30	Deformations of Different Girders for Case #3.		139
6.31	Longitudinal Stresses on the (U.S.) Side	* • • • • • • • • •	,
6 22	for Case #4.		140
6.32	Longitudinal Stresses on the (D.S.) Side for Case #4.		141
6.33	Transverse Stresses on the (U.S.) Side		
6 24	for Case #4.		142
6.34	Transverse Stresses on the (D.S.) Side for Case #4.		143
6.35	Shear Stresses on the (U.S.) Side for		±-₹-2
C 3C	Case #4.		144
6.36	Shear Stresses on the (D.S.) Side for Case #4.		145
6.37	Deformations of Different Girders for		4 7.7
c 20	Case #4.		146
6.38	Longitudinal Stresses on the (U.S.) Side for Case #5.		
6.39	Longitudinal Stresses on the (D.S.) Side	• • • • • • • •	147
c 45	for Case #5.		148
6.40	Transverse Stresses on the (U.S.) Side for Case #5.		1 40
6.41	Transverse Stresses on the (D.S.) Side	• • • • • • • •	1 49
	for Case #5.		1 50
6.42	Shear Stresses on the (U.S.) Side for Case #5.		י בי
6.43	Shear Stresses on the (D.S.) Side		151
	for Case #5.		1 52
6.44	Deformations of Different Girders for Case #5.		757
6.45	Longitudinal Stresses on the (U.S.) Side	• • • • • • • • •	153
	for Case #6.		154
6.46	Longitudinal Stresses on the (D.S.) Side for Case #6.		355
6.47	Transverse Stresses on the (U.S.) Side	• • • • • • • •	155
0	for Case #6.		156
6.48	Transverse Stresses on the (D.S.) Side for Case #6.		5 F F
6.49	Shear Stresses on the (U.S.) Side	• • • • • • • • •	157
	for Case #6.		158
6.50	Shear Stresses on the (D.S.) Side for Case #6.		1 - 0
6.51	Deformations of Different Girders	• • • • • • • •	1 50
	for Case #6.		160
6.52	Longitudinal Stresses for the Different Cases on the (U.S.) Side of the First Girder.	S	٦ - ٦
	on one (o.o.) blue of the little diffiel.	• • • • • • • • •	161

- viii - 0

6.53	Longitudinal Stresses for the Different Cases		
	on the (D.S.) Side of the First Girder.	• • • • • • • • •	162
6.54	Longitudinal Stresses for the Different Cases		
C 55		• • • • • • • • •	163
6.55	Longitudinal Stresses for the Different Cases		164
6.56	on the (D.S.) Side of the Second Girder. Longitudinal Stresses for the Different Cases	•••••	TOA
0.50	on the (U.S.) Side of the Third Girder.	• • • • • • • •	165
6.57.a	Longitudinal Stresses for the Different Cases	• • • • • • • • • • • • • • • • • • •	±07
	on the (D.S.) Side of the Third Girder.	· • • • • • • • •	166
6.57.b	Longitudinal Stresses for the Different Cases		
	on the (U.S.) Side of the Top Girder.		167
6.57.c	Longitudinal Stresses for the Different Cases	,	
	on the (D.S.) Side of the Top Girder.		168
6.58	Reactions Distribution on the Sill		
6 50	for Case #1.	• • • • • • • • •	169
6.59	Reactions Distribution on the Sill		
6.60	for Case #3. Reactions Distribution on the Sill	• • • • • • • • •	170
0.00	for Case #4.		171
6.61	Reactions Distribution on the Sill	* * * * * * * * * * * * * * * * * * * *	T (+
	for Case #5.		172
6.62	Reactions Distribution on the Sill		- ! -
	for Case #6.		173
6.63	Comparison Between the Reaction Distribution		
	forthe Different Studied Cases.		174
6.64	Longitudinal Stresses on the Skin Plate in		
	Kg/cm^2 for Case #1.		175
6.65	Transverse Stresses on the Skin Plate in		~ C
c	Kg/cm^2 for Case #1.	• • • • • • • • • • • • • • • • • • • •	176
6.66	Longitudinal Stresses on the Skin Plate in Kg/cm^2 for Case #6.		7
6.67	Transverse Stresses on the Skin Plate in	• • • • • • • • •	177
0.07	Kg/cm^2 for Case #6.		178
6.68	Deformations of the Skin Plate for Case #1.		179
6.69	Deformations of the Skin Plate for Case #2.		180
6.70	Deformations of the Skin Plate for Case #3.		181
6.71	Deformations of the Skin Plate for Case #4.		182
6.72	Deformations of the Skin Plate for Case #5.		183
6.73	Deformations of the Skin Plate for Case #6.		184
6.74.a	Finite Element Mesh for the Existing Naga		
6.74.b	Hammadi Miter Lock Gate.		191
0.74.1	Longitudinal Stresses forthe (U.S.) Side of the Critical Girder in the Existing		
	Naga Hammadi Gate.		100
6.74.c	Longitudinal Stresses forthe (D.S.) Side		192
	of the Critical Girder in the Existing		
	Naga Hammadi Gate.		193
6.74.d	Deformations of the Critical Girder in the		
	Existing Naga Hammadi Gate.		194
6.75	General Layout for the Existing Lock and		
	the New Lock for Naga Hammadi City in the		
6 76	Upper Egypt.	• • • • • • • • • • • • • • • • • • • •	229
6.76	Finite Element Mesh for the New Naga		
6.77	Hammadi Miter Type Lock Gate. Deformation for the Third Girder due to	• • • • • • • • •	250
· / /	perormation for the third direct and fo		

	the Effect of the Sill.	• • • • • • • • • • • • • • • • • • • •	231
6.78	Longitudinal Stresses for the Third Girder (U.S.) Side due to the Effect of the Sill.		232
6.79	Longitudinal Stresses for the Third Girder (D.S.) Side due to the Effect of the Sill.	• • • • • • • • •	
6.80	Deformation for the Ninth Girder due to the		
6.81	Effect of the Sill. Longitudinal Stresses for the Ninth Girder	• • • • • • • • •	254
6.82	(U.S.) Side due to the Effect of the Sill. Longitudinal Stresses for the Ninth Girder	• • • • • • • • • • • • • • • • • • • •	235
	(D.S.) Side due to the Effect of the Sill.		236
6.83	Deformation for the Top Girder due to the Effect of the Sill.		237
6.84	Longitudinal Stresses for the Top Girder (U.S.) Side due to the Effect of the Sill.		238
6.85	Longitudinal Stresses for the Top Girder (D.S.) Side due to the Effect of the Sill.		239
6.86	Reaction Distribution on the Sill for	• • • • • • • •	
6.87	Case #1. Contour Map for the Longitudinal Stresses		240
	<pre>Kg/cm^2 on the Upstream Side of the Horizont Girders (Case #1).</pre>	al	241
6.88	Contour Map for the Longitudinal Stresses	in	
	<pre>Kg/cm² on the Downstream Side of the Horizo Girders (Case #1).</pre>		242
6.89	Contour Map for the Longitudinal Stresses Kg/cm ² on the Upstream Side of the Horizon	in tal	
6.90	Girders (Case #2). Contour Map for the Longitudinal Stresses		243
0.00	Kg/cm^2 on the Downstream Side of the Horizo	ntal	0.4.4
6.91	Girders (Case #2). Contour Map for the Longitudinal Stresses		244
	<pre>Kg/cm^2 on the Upstream Side of the Horizont Girders (Case #3).</pre>	al	245
6.92	Contour Map for the Longitudinal Stresses Kg/cm^2 on the Downstream Side of the Horizo		_ , ,
	Girders (Case #3).	•••••	246
6.93	Contour Map for the Deformations on the Horizontal Girders in cm (Case #3).		247
6.94	Contour Map for the Longitudinal Stresses Kg/cm^2 on the Upstream Side of the Horizont		
6.95	Girders (Case #4). Contour Map for the Longitudinal Stresses		248
0.90	Kg/cm^2 on the Downstream Side of the Horizo	ontal	249
6.96	Girders (Case #4). Contour Map for the Deformations on the	• • • • • • • •	<u>~</u> ⊤_
6.97	Horizontal Girders in cm (Case #4). Deformation of the Third Girder for the	• • • • • • • •	259
	Different Cases. Longitudinal Stresses for the Third Girder		25:
6.98	(U.S.) Side Due to the Different Cases.		252
6.99	Longitudinal Stresses for the Third Girder (D.S.) Side Due to the Different Cases.		25]
6.100	Deformation of the Ninth Girder for the Different Cases.		25.
	Institutional Changes for the Ninth Cirdon		'ز ∠

	(U.S.) Side Due to the Different Cases	255
6.102	Longitudinal Stresses for the Ninth Girder	
	(D.S.) Side Due to the Different Cases	256
6.103	Deformation of the Top Girder for the	
	Different Cases	257
6.104	Longitudinal Stresses for the Top Girder	
	(U.S.) Side Due to the Different Cases	258
6.105	Longitudinal Stresses for the Top Girder	0-0
	(D.S.) Side Due to the Different Cases	259
6.106	Longitudinal Stresses for the First Stiffener	
	for Different Cases	260
6.107	Longitudinal Stresses for the Second Stiffener	06.
	for Different Cases	261
6.108	Longitudinal Stresses for the Third Stiffener	0.00
	for Different Cases	262
6.109	Longitudinal Stresses for the Fourth Stiffener	000
	for Different Cases	263
6.110	Longitudinal Stresses for the Fifth Stiffener	264
	for Different Cases	204
6.111	Reaction Distribution on the Sill for Different Cases	265
6.112	Different Cases Longitudinal Stresses on the Skin Plate in	200
0.112	Kg/cm^2 (Case #1).	266
6.113	Transverse Stresses on the Skin Plate in	ے د
0.113	Kq/cm ² (Case #1).	257
6.114	Longitudinal Stresses on the Skin Plate in	- · ,
0.114	Kg/cm ² (Case #4).	268
6.115	Transverse Stresses on the Skin Plate in	
	Kg/cm^2 (Case #4)	269
6.116	Modified Design for the New Naga Hammadi Gate	>
	(the Stiffened Zones and the Modified Thickness	
	of the Elements are included)	270
B.1	Schematic Diagram of an Impressed Current	-1.
	Cathodic Protection System	205