PHYSIOLOGICAL STUDIES ON VIABILITY AND YIELD OF SPINACH SEEDS

BY

MOHAMMAD TALAL ABDULSALAM ABDULGHFOOR EL-HABAR

A thesis submitted in partial fulfilment

of

DOCTOR OF PHILOSOPHY

in

Agricultural Science
(Vegetable Crops)

29442

Department of Horticulture

Faculty of Agriculture

Ain Shams University

1989

Approval Sheet

PHYSIOLOGICAL STUDIES ON VIABILITY AND YIELD OF SPINACH SEEDS

By

MOHAMMAD TALAL ABDULSALAM ABDULGHFOOR EL-HABAR

B.Sc. Agric. (Horticulture) Mosul University, Iraq, 1975 M.Sc. Agric. (Horticulture) Mosul University, Iraq, 1979

> This thesis for Ph.D. degree has been approved by:

Prof. of Vegetable Crops, Fac. Agr. Al-Azhar Univ.

Prof. of degetable Crops,

Fac. Agr. Zagazig Univ.

Prof. Dr. A.A. Sharaf A.S. Land. Prof. of Tegetable Crops,

Fao. Agr. Ain Shams Univ.

Date of examination: 15 / 5 /1989.

PHYSIOLOGICAL STUDIES ON VIABILITY AND YIELD OF SPINACH SEEDS

Ву

Mohamad Talal Abdulsalam El-Habar

B.Sc. Agric. (Horticulture) Mosul University,

Iraq, 1975

M.Sc. Agric (Horticulture) Mosul University,
Iraq, 1979

Under the supervision of :

Prof. Dr. Abd El-Reheim Sharaf*

Prof. Dr. Ibrahim I. El-Oksh*

ABSTRACT

The effect of sowing date, rate and number of nitrogen applications and some growth regulators on growth, viability and yield of spinach seeds were investigated. The results could be summarized as follows:

A significant favourable effect on growth, chemical composition, number of female plant (decrease sex ratio), and seed yield were obtained by early sowing (Nov. 20th). Whereas, the emergence of seed stalk, chlorophyll a were significantly promoted by late sowing date (Jan. 1st). Neither weight of 1000 seeds nor seed viability of the produced seeds and their seedling length were

^{*} Professor of Vegetable crops, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.

significantly affected by sowing dates.

- 2- Applying nitrogen at rate of 60 and 120 kgN/fed. increased significantly plant growth, seed stalk emergence chemical composition, number of female plants, seed yield as well as weight of 1000 seeds and hypocotyl length of the subsequent produced seeds, whereas, seed viability was not significantly affected.
- 3- Splitting the applied nitrogen at two or three doses had significant increase on seed yield, while, it had no significant effect on growth, rate of seed stalk emergence, chemical composition and seed yield components.
- 4- Spraying spinach with various GA3 and Alar concentrations significantly increased plant growth, total carbohydrate percentage and seed yield. Increasing GA3 concentration significantly decreased chlorophyll a, the total chlorophyll a+b, total nitrogen percentage number of days for emergence of seed stalk and number of female plants while Alar tended to show an opposite trend. No significant effect on weight of 1000 seeds, seed viability of the produced seeds as well as their seedling length was obtained as a result of GA3 and Alar applications. The combined treatment of GA3 and Alar did not exert further significant increase as compared with those induced by growth regulators alone.

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to **Dr. Abd El-Reheim Sharaf**, Professor of Vegetable crops, Faculty of Agriculture, Ain Shims University and to **Dr. Ibrahim I. El-Oksh**, Professor of Vegetable crops, in the same Faculty for their supervision, continuous advice, valuable suggestions and encouragement during the course of the experiments and the preparation of the thesis.

Deep thanks are also due to **Dr. Ahmed El-Gizawy** Associate Professor of Vegetable crops in the same Faculty for his kind help, continuous guidance, reviewing the thesis and valuable criticism through the course of this work.

The author wishes to express his deepest gratitude and sincere thanks to his beloved country **Iraq** for all what he has been donated for providing facilities for conducting the current research.

The author also extends his thanks and credit to his wife and children for their encouragement and help during his study.

DEDICATION

I WOULD LIKE TO DEDICATE
THIS THESIS TO MY WIFE AND
CHILDREN WHO ALWAYS
ENCOURAGE ME TO GET
THIS WORK DONE

CONTENTS

				Page
ΞN	TRODU	STION		. 1
RE'	VIEW (OF LITE	RATURE	• 3
MA	TERIA	LS AND	METHODS	• 35
RE:	SULTS	AND DI	scussion	. 46
	Firs	t exper	iment: Effect of sowing date, rate and number o	f
	nitr	ogen ap	plications on growth, yield and quality of seed	.5
	of s	pinach.		
	I.1.	Growth	characters	. 46
	I.2.	Rate o	f seed stalk emergence	. 59
	I.3.	Chemic	al composition of plants	. 62
		1.3.1.	Chlorophyll content	- 62
		I.3.2.	Mineral content	. 67
			I.3.2.1. Total nitrogen	- 67
			I.3.2.2. Phosphorus	. 70
			I.3.2.3. Potassium	. 72
		I.3.3.	Total carbohydrate	. 74
	<u> </u>	Sex ra	τίο	. ?7
	1.5.	Seed y	ield components	. 80
		I.5.1.	Total seed yield (kgs/fed.)	. 80
		I.5.2.	Weight of 1000 seeds	. 84
		I.5.3.	Chemical composition of seeds	. 86
			I.5.3.a. Total nitrogen	- 86
			I.5.3.b. Total carbohydrate	. 89
		1.5.4.	Seed viability	. 91
		1.5.5.	Seedling length	- 95

<u> 1</u>	Page			
II. Second experiment: Effect of gibberellic acid and Alar				
on growth, yield and quality of seeds of spinach.				
II.1. Growth characters	93			
II.2. Rate of seed stalk emergence	109			
II.3. Chemical composition of plants	111			
II.3.1. Chlorophyll content	111			
II.3.2. Mineral content	113			
II.3.2.1. Total nitrogen	113			
II.3.2.2. Phosphorus	116			
II.3.2.3. Potassium	117			
II.3.3. Total carbohydrate	118			
II.4. Sex ratio	119			
II.5. Seed yield components	122			
II.5.1. Total seed yield (kgs/fed.)	122			
II.5.2. Weight of 1000 seeds	25			
II.5.3. Chemical composition of seeds	125			
II.5.3.a. Total nitrogen	25			
II.5.3.b. Total carbohydrate	27			
II.5.4. Seed viability	27			
II.5.5. Seedling length	29			
SUMMARY AND CONCLUSIONS 1	3 1			
REFERENCES	39			
ARABIC SUMMARY				

9

LIST OF TABLES

Table		Page
1	The chemical analysis of soil at the expeirmental site	36
2	The monthly average temperature and photoperiods during the seasonal growth	<u>);</u> <u>) 1</u>
3	Effect of sowing date, rate and number of nitrogen applications on plant length (cms) of spinach plants at fresh marketable stage	<u>4</u> 7
<u>1;</u>	Effect of sowing date, rate and number of nitrogen app- lications on number of leaves/plant of spinach plants at fresh marketable stage	48
5	Effect of sowing date, rate and number of nitrogen applications on leaf area index (cm2) of spinach plnats at fresh marketable stage	49
6	Effect of sowing date, rate and number of nitrogen applications on fresh weight/plant (gms) of spinach plants at fresh marketable stage	
7	Effect of sowing date, rate and number of nitogen applications on dry weight/plant (gms) of spinach plants at fresh marketable stage	51
8	Effect of sowing date, rate and number of nitrogen applications on seed stalk height (cms) of female spinach plants at seed harvest stage	54
	Effect of sowing date, rate and number of nitrogen applications on number of branches/plant of female spinach plants at seed harvest stage	5 5
	Effect of sowing date, rate and number of nitrogen app- lications on dry weight/plant (gms) of female spinach plants at seed harvest stage	56

able		Page
11	Effect of sowing date, rate and number of nitrogen app- lications on rate of seed stalk emergence (days) of	
	spinach plants during growth period	60
12	Effect of sowing date, rate and number of nitrogen app-	
	lications on chlorophyll a and b (mg/dec²) of spinach leaves at fresh marketable stage in 1986/1987	
	season	63
13	Effect of sowing date, rate and number of nitrogen app-	
	lications on chlorophyll a+b (mg/dec²) of spinach lea- ves at fresh marketable stage	64
14	Effect of sowing date, rate and number of nitrogen app-	
	lications on total nitrogen percentage (mg/100 gms dry	
	weight) of spinach plants at seed harvest stage	68
15	Effect of sowing date, rate and number of nitrogen app-	
	lications on phosphorus percentage (gm/100 gm dry weight) of spinach plants at seed harvest stage	71
16	Effect of sowing date, rate and number of nitrogen app-	
	lications on potassium percentage (gm/100 gms dry	
	weight) of spinach plants at seed harvest stage	73
17	Effect of sowing date, rate and number of nitrogen applications on total carbohydrate percentage (gm/100 gms	
	dry weight) of spinach plants at seed harvest stage	75
18	Effect of sowing date, rate and number of nitrogen app-	
	lications on sex ratio (M/F) of spinach plants at full	- ^
	blooming stage	78
19	Effect of sowing date, rate and number of nitrogen app-	
	lications on total seed yield (kgs/fed.) of spinach plants	81

able		Page
20	Effect of sowing date, rate and number of nitrogen app-	
	lications on weight of 1000 seeds (gms) of spinach	
	plants	85
21	Effect of sowing date, rate and number of nitrogen app-	
	lications on total nitrogen percentage (mg/100 gms dry	
	weight) of spinach seeds	87
22	Effect of sowing date, rate and number of nitrogen app-	
	lications on total carbohydrate percentage (gm/100 gms	
	dry weight) of spinach seeds	90
23	Effect of sowing date, rate and number of nitrogen app-	
	lications on germination percentage of spinach seeds	92
24	Effect of sowing date, rate and number of nitrogen app-	
	lications on germination rate (days) of spinach seeds	94
25	Effect of sowing date, rate and number of nitrogen app-	
	lications on hypocotyl length (cms) of spinach seed-	
	ling	96
26	Effect of sowing date, rate and number of nitrogen app-	
	lications on radical length (cms) of spinach seedling	98
27	Effect of gibberellic acid and Alar on plant length (cms)	
	during growth period and seed stalk height (cm) at seed	
	harvest stage of spinach plants	100
28	Effect of gibberellic acid and Alar on leaves number/	
	plant, leaf area index (cm²), fresh weight/plant (gms)	
	and dry weight/plant (gms) of spinach plant at fresh	

Table		Page
29	Effect of gibberellic acid and Alar on number of branches/plant, dry weight/plant (gms) of female plant at seed harvest stage and rate of seed stalk emergence (days) during growth period of spinach plants	
30	Effect of gibberellic acid and Alar on chlorophyll content (mg/dec²) of spinach leaves at fresh marketable stage in 1987 season	112
31	Effect of giberellic acid and Alar on total nitrogen, phosphorus, potassium and total carbohydrate percentage (gm/100 gms dry weight) of spinach plants at seed harvest stage	115
32	Effect of gibberellic acid and Alar on sex ratio (M/F) at full blooming stage, total seed yield (kgs/fed.) and weight of 1000 seeds (gms) of spinach plants	120
33	Effect of gibberellic acid and Alar on total nitrogen and carbohydrate percentage (gm/100 gms dry weight) of spinach seeds	126
34	Effect of gibberellic acid and Alar treatments on spinach plants on germination percentage and rate (days) of produced seeds and hypocotyl and radical length (cms) of its produced seedling	

INTRODUCTION

Spinach plants (<u>Spinacia oleracea</u> L.) is known to be one of the popular leafy vegetable crops. The average cultivated area of spinach crop druing the period 1983-1986 was 5855 feddan in Egypt* and 1324 feddan (2225 donum) in Iraq.** Accordingly, the amount of required seeds for that areas were 64405 and 14564 kgs, respectively. These figures highlights the importance of spinach seed production under the local conditions to provide the local market demand.

New seed production and technology nowadays depend upon modern ways of producing high seed yield with the best quality. This implies not only the proper gentic composition, but it could be achieved by adapting suitable cultural practies, i.e. the optimum sowing date, fertilization and growth regulators application.

^{*} Ministry of Agriculture, Egypt.

^{**} Ministry of Planning, Iraq, (donum = 2500 m²).

Suitable sowing date of spinach is known to be the most important factor which control growth, flowering and seed production.

Nitrogen being the major nutrient element, that has the greatest effect on spinach plant growth and in turn producing seeds.

Recently, some investigators had shown that application of growth regulators had a favourable effect on flowering and seed production of some plant species.

The present investigation was mainly conducted to study the effect of sowing date, rate and number of nitrogen applications and two growth regulators on growth, seed yield and quality of spinach (cv. Salonikey).