PHYSIOLOGICAL RESPONSE TO DROUGHT FOR SOME LOCAL AND INTRODUCED TOMATO CULTIVARS IN YEMEN ARAB REPUBLIC

BY

MAHASSEN ALI ABDOU MENIBARY

A thesis submitted in partial fulfillment of

the requirements for the degree of

in

DOCTOR OF PHILOSOPHY

Agricultural Science (Vegetable Crops)

Department of Horticulture

Faculty of Agriculture

Ain Shams University

1772

635.642 A

1991

Approval Sheet

PHYSIOLOGICAL RESPONSE TO DROUGHT

FOR SOME LOCAL AND INTRODUCED

TOMATO CULTIVER IN THE YEMEN, ARAB REPUBLIC

BY

MAHASSEN ALI ABDOU MENIBARY

M.Sc. IN HORTICULTURE, CAIRO UNIVERSITY, 1980

This thesis for Ph degree has been Approved by:

1- Prof. Dr. Shamel Shanan

- SA Sheere

Prof. of Vegetables.Al-Azhar University

2- Prof. Dr. Abdel El-Ghany El-Gindy

Prof. of Mechanization.Ain Shams University

3- Prof. Dr. A.S. El-Beltage

Prof. of Vegetables.Ain Shams University

Date of examination: 2 /7 / 1991

ACKNOWLEDGEMENT

I wish to express deep sense of gratitude to Prof. Dr. M.A. Maksoud, Prof. of vegetable crops, Department of Horticulture, Ain Shams, Univ. for his continuous help and encouragement.

My Sincere thanks and special gratitude to Prof. Dr.Adel. S.El-Beltagy , Prof. of vegetable crops of Horticulture, Ain Shams, Univ.

Sincerely thanks Dr. Ayman Farid Abou Hadid, Associate Professor of vegetable crops, who always offer his valuable and helpful guidance and for planning this work.

Special thanks to my brother in law Prof. Dr. Abdul -Wally Agbary, Prof. of Genetics, Faculty of Agriculture, Sanaa. Univ., for adapting me to work with drought subject and assisting in planning this work.

Thanks for all my colleagues in Ain Shams Univ., and Sanaa Univ. for their friendly atmosphere under the guidance of their Deans.

Great thanks to themembers of Faculty of science Sanaa Univ. especially Dr. Baeesa.

PHYSIOLOGICAL RESPONSE TO DROUGHT FOR SOME LOCAL AND INTRODUCED TOMATO CULTIVER IN THE YEMEN, ARAB REPUBLIC

BY

MAHASSEN ALI ABDOU MENIBARY M.Sc. IN HORTICULTURE, CAIRO UNIVERSITY, 1980

Under the supervision of

Prof.Dr. ADEL S. EL-BELTAGY

Prof. of Vegetables, Ain Shams University

Dr. AYMAN FARID ABOU HADID

Associate Prof. of vegetables, Ain Shams University

Prof. Dr. Abdul-Wally Agbary

Prof. of Genetics, Sanaa University .

ABSTRACT

Three experiments were conducted. The first and the second experiment were done under Yemen condition during the period from April to June 1988-1989 at El wadi farm and Farm of the Faculty of Agriculture, Sanaa University in order to estimate the empirical water consumptive use with four formula and to compare them with the actual water consumptive use by lysometer.

The results indicated that high correlation coefficient were

Contents

		Page
1	INTRODCTION	1
2	REVIEW OF LITEATURE	2
2.1	Methods of estimating evapotranspiration	2
2.1.1	Water balance	4
2.1.2	Temperature and Radiation based methods	4
2.1.2.1	Blaney-criddle method	4
2.1.2.2	Radiation method	5
2.1.2.3	Penman method	5
2.1.2.4	Humidity method	5
2.1.3	Evapotranspiration (ET)	5
2.2	Water requirements of tomato	8
2.3	Stomatal density and response	9
2.4	Plant temperature	12
2.5	Leaf area index under stress	14
2.6	Root growth	16
2.7	Effect of water stress on some nitrogen and ethyler	ne
	content.	17
2.7.1	Effect of water stress on plant nitrogen content	17
2.7.2	Effect of water stress on amino acid content	
	and protein.	18
2.7.3	Ethylene biosynthesis	20
2.7.4	Effect of water stress on chlorophyll content	25
3	MATERIALS and METHODS	27
4	RESULTS	7 7
		37

4.1	First experiment	37
4.1.1	water requirements for tomato plant.	37
4.2	Second experiment	42
4.2.1	Effect of water treatments on vegetative growth.	
4.2.1.1	Effect on plant height	42
4.2.1.2	Effect on number of leaves	45
4.2.1.3	Effect on leaf area index.	47
4.2.1.4	Effect on number of branches.	47
4.2.1.5	Effect on number of clusters.	5 S
4.2.2	Effect of water treatment on root growth.	50
4.2.2.1	Effect on root length	50
4.2.2.2	Effect on root number	53
4.2.3	Effect of water treatment on tomato yield.	5.3
4.2.3.1	Effect on number of early fruits (70 days)	53
4 .2.3.2	Effect on number of late fruits (90 days)	5 6
4.2.3.3	Effect on the yield(kg per m^2)	56
4.2.3.4	Effect on average fruit weight	56
4.2.4	Effect of water treatments on physiological	
	and chemical characters.	60
4.2.4.1	Effect on chlorophyll content.	60
4.2.4.2	Effect on leaf temperature.	62
4.2.4.3	Effect on transpiration.	62
4.2.4.4	Effect on total number of stomata per cm2.	65
4.2.4.5	Effect on dry-fresh weight ratio.	65
4.2.4.6	Effect on water saturation deficit.	69
4.3	Third experiment	69
4.3.1	Effect of water treatment on chlorenhyll	

	ethylene and nitrogen content.	69
4.3.1.1	Effect on total chlorophyll content.	7.2
4.3.1.2	Effect on ethylene production.	
4.3.1.3	Effect on total nitrogen content.	7.5
5	DISCUSSION	7.8
6	SUMMARY and CONCLUSION	85
7	REFERNCES	93
8	APPENDIX	115
9	ARABIC SUMMARY	***

List of Figures

		Page
I	Relationship between Soil tension (cbar) and	31
	Soil moisture content (%) under Sanaa Condition.	
2	Evapotranspiration of tomato plants as measured by	3 8
	lysometer during the two successive growth	
	season 1988, 1989 under the climatic conditions	
	of Sanaa, Yemen.	
3.1.	Relationship between evapotranspiration of	39
	different methods (Penman, Humidity, Radiation,	
	Blany- Criddle) and lysometer formula for	
	a period from April to June under Sanaa	
	Condition-Yemen.	
3.2	Evapotranspiration for tomato plant astestimated	39
	by different methods (Penman, Humidity, Radia	tion,
	Blany-Criddle) and measured by lysometer for a	
	period from April to June under Sanaa Condition.	
3.3	Correlation between evapotranspiration measured	39
	by penman method and evapotranspiration as	
	measured by Humidity, Radiation, Blany-Criddle and	
	lysometer.	
4.1	Amount of irrigation plus rain at three levels	40
	of soil moisture tension (-20, -50, -70 c bar)	
	and lyscmeter formula which was compared with	
	a period from April to June at Sanaa Condition.	
4.2	Correlation between evapotranpiration as measured by	<i>4</i> ∩

	lysometer and amount of irrigation plus rain at water	
	treatment -20, -50 , -70 cbar under Sanaa Condition,	
	Yemen.	
5.1	Amount of irrigation only at water treatment	41
	-20, -50, -70 cbar under Sanaa Condition ,	
	Yemen.	
5.2	Correlation between evapotranspiration as measured by	41
	lysometer and amount of irrigation only at water	
	treatment -20, -50, -70 c bar under Sanaa Condition,	
	Yemen.	
6	Effect of water treatment on vegetative growth.	43
6.1	Effect of water treatment on plant height.	43
6.2	Effect of water treatment on number of leaves on	46
	tomato plant.	
6.3	Effect of water treatment on leaf area index on tomato	48
	plant.	
6.4	Effect of water treatment on number of branches	49
	on tomato plant.	
6.5	Effect of water treatment of clusters on tomato plant.	51
7.	Effect of water treatment on root growth.	52
7.1	Effect of water treatment on length of root on tomato	52
	plant.	32
7.2	Effect of water treatment on number of roots on tomato	54
	plant.	
8	Effect of water treatment on yield .	55
8.1	Effect of water treatment on number of early	55
	fruit vields	

8.2	Effect of water treatment on number of late fruit yield.	57
8.3	Effect of water treatment on the yield per m^2.	59
8.4	Effect of water treatment on average fruit weight.	61
9	Effect of water treatment on some physiological	61
	and chemical characters.	
9.1	Effect of water treatment on total chlorophyll on tomato	61
	plant.	
9.2	Effect of water treatment on (air- leaf) temperature on	63
	tomato plant.	
9.3	Effect of water treatment on transpiration on tomato	64
	plant.	0.1
9.4	Effect of water treatment on number of stomata on	бб
	tomato plant.	
9.5	Effect of water treatment on dry to fresh weight on	67
	tomato plant.	
9.6	Effect of water treatment on water saturated	68
	deficit on tomato plant.	
10	Effect of water treatment on chlorophyll, ethylene and	7 C
	nitrogen content.	
10.1	.A Effect of interaction between water treatment	70
	and totalchlorophyll content of Castle Rock and	
	Napoli variety at summer morning and afternoon.	
10.1	.B Effect of interaction between water treatment	71
	on total chlorophyll content of Castle Rock and	
	Napoli variety at winter morning and afternoon.	
10.2	.A Effect of interaction between water treatment and	73
	ethylene of Castle Rock and Napoli variety at summer	

morning and afternoon.

- 10.2.B Effect of interaction between water treatment and 74 ethylene of Castle Rock and Napoli variety at Winter morning and afternoon.
- 10.3.A Effect of interaction between water treatment and 76 nitrogen of Castle Rock and Napoli variety at summer morning and afternoon.
- 10.3.B Effect of interaction between water treatment and 77 nitrogen of Castle Rock and Napoli variety at Winter morning and afternoon.

List of Tables

page

1.1	Prevailing climatic conditions for two experimentl	
	seasons and the calculation of irrigation water.	116
1. 2	Evapotranpiration mm/day was measured by	
	(Humidity , penman, Radiation, Blany - Criddle)	
	formulas at period from April to June under Sanaa	
	condition.	117
2.1	Relationship between number of irrigations and	
	total amount of (irrigation + rain) under Sanaa	
	conditions.	118
2.1.	A Amount of water consumptive use for three water	
	treatments -20cbar,-50cbar,-7ocbar and lysometer	
	at Sanaa contions for a period from April to June.	119
2.2	Relationship between number of irrigations and	
	amount of irrigation only under Sanaa Conditio	n. ₁₂₀
3.1	Effect of interaction between water treatment and	
	variety on plant vegetative growth.	121
3.2	Effect of variety on vegetative growth.	122
3.3	Effect of water treatment on vegetative plant grow	th. ₁₂₂
4.1	Effect of interaction between water treatment and	
	variety on root growth.	123
4.2	Effect of variety on root growth.	124
4.3	Effect of treatment on root growth.	124
5.1	Effect of interaction between water treatment and	
	variety on chemical and physiclegical characters	10-

5.2	Effect of variety on chemical and physiological	
	characters.	126
5.3	Effect of water treatment on chemical and	
	physiological characters.	126
6.1	Effect of interaction between water treatment and	
	variety on yield.	127
6.2	Effect of variety on yield.	128
6.3	Effect of water treatment on yield.	123
7.1	Effect of interaction between water treatment and	
	chlorophyll emission of Napoli variety.	129
7.2	Effect of interaction between water treatment and	
	chlorophyll emission of Castle Rock.	130
8.1	Effect of interaction between water treatment and	_00
	total ethylene content of Napoli variety.	131
8.2	Effect of interaction between water treatment and	_ 3 _
	total ethylene content of Castle Rock variety.	
9.1	Effect of interaction between water treatment and	132
	nitrogen content of Napoli variety.	133
9.2	Effect of interaction between water treatment and	
	nitrogen content of Castle Rock variety	101

INTRODUCTION