SPECIFIED DEVICED TECHNIQUES FOR

DETECTING FISH CONTAMINANTS

By

MAHMOUD ABDEL MONAIM MOSTAFA ABOU DONIA

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF

THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

M. A

IN

37eb

AGRICULTURAL SCIENCE

(FOOD TECHNOLOGY)

DEPARTMENT OF FOOD SCIENCE FACULTY OF AGRICULTURE AIN SHAMS UNIVERSITY

1990

Approval Sheet

SPECIFIED DEVICED TECHNIQUES FOR DETECTING FISH CONTAMINANTS

Ву

Mahmoud Abdel Monaim Mostafa Abo Donia

B.Sc. (Food Science) 1976

Faculty of Agriculture, Cairo University
M.Sc. (Food Science) 1985

Faculty of Agriculture, Cairo University

Prof. Dr. Y.M. Hassan

Prof. of Food Science

Ain Shams University and

Governor of Menofia

Prof. Dr. S.I. El-Sayed

Prof. of Pesticide Chemistry

National Research Centre

Prof. Dr. M.A. Abdallah

Prof. of Food Science

Ain Shams University

Date of examination: ... 23 1.5 1.895.....

SPECIFIED DEVICED TECHNIQUES FOR DETECTING FISH CONTAMINANTS

Вy

Mahmoud Abdel Monaim Mostafa Abo Donia

B.Sc. (Food Science) 1976

Faculty of Agriculture, Cairo University
M.Sc. (Food Science) 1985

Faculty of Agriculture, Cairo University

Under the Supervision of:

Prof. Dr. M.A. Abdallah
Prof. of Food Science
Ain Shams University

Prof. Dr. I.M. Hassan
Prof. of Food Science
Ain Shams University

Prof. Dr. M.M. Naguib
Prof. of Food Microbiology
National Research Centre

ABSTRACT

The relation between contaminants (such as pesticides & heavy metals) and biological aspects of fish was considered. So, different fish and water samples were taken from the commercial markets of 8 governorates (Red Sea, Suez, Ismailia, Damietta, Port Said, Fayoum,

Aswan and Alexandria) and 4 selected lakes (Bardawil, Manzala, Marute and Wadi El-Raiyan). Organochlorine pesticides, i.e., beta-BHC, lindane, heptachlor, aldrin, gamma-chlordane, and DDT were determined in fish samples from the previous governorates. In addition to organochlorine pesticides, malathion as organophosphorous pesticide was determined in fish and water samples collected from the 4 lakes. Fish samples from the previous lakes were also analyzed for heavy metal contaminants, i.e., Cd, Cu, Fe, Mn, Pb, Zn and Hg.

The acute toxicity of pesticides was studied using Tilapia nilotica and Cyprinus carpio. The fish samples were exposed to six different concentrations of both DDT and malathion for 96 hr. Mortality %, LC50's, relative susceptibility relative toxicity and safe concentrations were calculated for both fish species.

Chronic toxicity and accumulation of malathion were also determined by exposing the previous two fish species to 3 different concentrations of malathion for 26 days. Muscles, gills, intestine and livers were analyzed for the determination of accumulation ratio. The effect of different cooking methods on the accumulated malathion in the fish muscles was investigated and degradation ratio was calculated for each process.

ACKNOWLEDGEMENT

The author wishes to express his deepest appreciation and sincere gratitude to **Prof. Dr. M.A. Abdallah**, Professor of Food Science, Fac. of Agric., Ain Shams Univ., for his continuous supervision and valuable guidance in preparing the manuscript especially in the comments and discussion.

The author appreciates the participation of **Prof. Dr. 1.M. Hassan**, Professor of Food Science, Fac. of Agric.,
Ain Shams Univ., for his continuous supervision and his
scientific advise throughout the study.

My gratitude is extended to **Prof. Dr. Khayria Naguib**, Professor of Food and Dairy Microbiology, National Research Centre for her greatest encouragement, facilities offered and her special advisory aspects.

Deepest and sincere gratitude are due to **Prof. Dr. M.M. Naguib**, Prof. of Food Microbiology, National Research Centre, for all facilities he kindly offered throughout the study.

Special thanks are due to the G.A.F.R.D., especially the General Manager of the Bardawil lake (Mr. M.M. El-Bawab), and to the General Manager of the National Aquacultural Centre (Dr. Aly Khater) for the effective help during collecting of the samples.

CONTENTS

P	AGE
INTRODUCTION	1
REVIEW OF LITERATURE	6
1. Pesticide Residues in the Environment	6
2. Accumulation of Pesticide Residues	12
3. Toxicity of Pesticides	18
4. Effect of Technological Processes on Pesticide Residues	24
5. Heavy Metals in the Environment	25
MATERIALS AND METHODS	34
I - MATERIALS	3.4
l. Pesticide Standards	34
2. Marketable Fish Samples	34
3. Fish and Water Samples Collected from Selected Lakes	40
4. Aquatic Fish Samples	40
II - METHODS	44
1. Technological Methods	44
2. Analytical Methods	44
2.1. Determination of organochlorine pesticides	44
2.1.1. In fish tissues from markets & lakes.	44
2.1.2. In lake water samples	48
2.2. Determination of organophosphorous pesticide	
(malathion) in fish tissues and their organs	50
2.2.1. In fish tissues from lakes	50

LIST OF TABLES

PABLE	I	PAGE
1	Chemical structure and the formula index of the	
	tested pesticides	35
2	Sources and scientific names of the surveyed tested	
	fish samples from different Egyptian governorates	38
3	Sources and scientific names of fish samples	
	collected from the selected lakes	41
4	Sources and distances of water samples collected	
	from the selected lakes	42
5	Recovery % and limit of detection ($\mu g/kg$) of the	
	tested pesticides within the applied method	53
6	Wave lengths and slit for determination of heavy	
	metals	55
7	Physicochemical characters of the water used in	
	the aquaria	58
8	Organochlorine residues ($\mu g/kg$ wet weight) in some	
	Egyptian fish collected from Red Sea governorate.	65
9	Organochlorine residues ($\mu g/kg$ wet weight) in some	
	Egyptian fish collected from Ismailia governorate	67
10	Organochlorine residues ($\mu g/kg$ wet weight) in some	
	Egyptian fish collected from Suez governorate	68
11	Organochlorine residues ($\mu g/kg$ wet weight) in some	
	Egyptian fish collected from Damietta governorato	60

TABLE

FABLE	: 1	PAGE
12	Organochlorine residues (µg/kg wet weight) in some	
	Egyptian fish collected from Port Said governorate	71
13	Organochlorine residues ($\mu g/kg$ wet weight) in some	
	Egyptian fish collected from Aswan, Fayoum and	
	Alexandria	72
14	Accumulated pesticide residues as $\mu g/kg$ wet weight	
	in 8 Egyptian governorates	73
15	Organochlorine residues ($\mu g/kg$ wet weight) in fish	
	samples collected from Bardawil lake	77
16	Organochlorine residues ($\mu g/kg$ wet weight) in fish	
	samples collected from Manzala lake	79
17	Organochlorine residues ($\mu g/kg$ wet weight) in fish	
	samples collected from the selected lakes	80
18	Accumulated pesticide residues expressed as µg/kg	
	wet weight in fish samples collected from four	
		82
19	Organochlorine residues (ng/L) in water samples	
		85
20	Organochlorine residues (ng/L) in water samples	
0.1	collected from Manzala lake	87
21	Organochlorine residues (ng/L) in water samples	
2.2		88
22	Accumulated pesticide residues expressed as ng/L	
	in water samples collected from four Egyptian	
	lakes	91

TABLE	Z I	PAGE
23	Organophosphorous pesticide residues (µg malathion/	
	kg wet weight) in fish samples of the selected	
	lakes	98
24	Accumulated pesticide residues expressed as µg	
	malathion/kg wet weight in fish samples collected	-
	from the selected lakes	99
25	Malathion concentration (ng/L) in water samples	
	collected from different selected lakes	102
26	Accumulated pesticide residues expressed as ng/L	
	of water samples collected from the selected	
	lakes	104
27	Heavy metals content in fish samples collected	
	from Bardawil lake	L09
28	Heavy metals content in fish samples collected	
	from Manzala lake	10
29	Heavy metals content in fish samples collected	
	from Maruit lake	11
30	Heavy metals content in fish samples collected	
	from Wadi El-Raiyan lake	.13
31	Accumulated data of heavy metals content as ppm	
	(mg/kg wet weight) of fish samples collected from	
	the selected lakesl	15
32	Concentrations of heavy metals in fish from the	
	international literature (1975 1997)	2.2

TABLE	PAGE
33	Mortality percent of the selected fish samples
	exposed to DDT126
34	Mortality percent of the selected fish samples
	exposed to malathion
35	LC50's calculated by regression analysis
36	LC50's determination of the applied pesticides for
	the selected fish species
37	LC50's, relative susceptibility, relative toxicity
	and safe concentrations of DDT to the selected
	fish speceis
38	LC50's, relative susceptibility, relative toxicity
	and safe concentrations of malathion to the
	selected fish speceis
39	Effect of the investigated pesticides on the sur-
	facing activity (No. of visits/hr) for selected
	fish species
40	Effect of the investigated pesticides on the sur-
	facing activity [distance travelled (m/hr)] for
	selected fish species
41	Concentrations of malathion (mg/kg wet weight)
	accumulated by <u>Tilapia</u> <u>nilotica</u>
42	Concentrations of malathion (mg/kg wet weight)
	accumulated by Cyprinus carpio
43	Cumulative data of malathion accumulation by the
	selected fish species

TABLE							PAGE
44	Disappearance	of	malathion	in	the	tested	fish
	samples by dif	fere	nt technolog	gica	l pro	cesses .	156

LIST OF FIGURES

Fig.	No. PAGE
1	Bardawil lake showing sampling points 43
2	Separation of organochlorine pesticides by GLC 49
3	Separation of malathion by GC/MS 52
4	Glass aquaria of static system 57
5	Accumulation of malathion in organs of \underline{T} . $\underline{\text{nilotica}}$
	exposed to different malathion concentrations
	for 28 days146
6	Accumulation of malathion in organs of C. carpio
	exposed to different malathion concentrations
	for 28 days149

INTRODUCTION

INTRODUCTION

It is well known that fish and fish products are considered to be one of the main animal protein sources. In Egypt, and in spite of the presence of several natural water lakes and the greatest zones of fish catching areas (Mediterranean Sea, Red Sea and River Nile), the annual production of fish was not more than 324000 ton in 1989. such relatively low annual fish production may be related to many well known factors; one of which is the problem of contaminant matters which may enter food chains (especially fish resources) at many different stages, i.e., natural water constituents, feed ingridients, irrigation water and sprayed pesticides.

Contaminant matters as a group of pollutant materials have a long history and had been recorded early during the Roman Impire; but now, such problem have just become a major one during the last two decades. Subsequently, it is of great importance to look at contaminant matters, especially pesticides and heavy metals as a system of interaction between air, water and organisms.

The production of synthetic toxicants, as pesticides was increased and these contaminants can be introduced to the environment or to the natural water sources via