PHYSIOLOGICAL STUDIES ON THE PROPAGATION OF SOME TIMBER TREES GROWN IN EGYPT

Ву

NASR RAGHEB SAID

A thesis submitted in partial fulfillement

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Science
(Floriculture)

Department of Horticulture

Faculty of Agriculture

Ain Shams University

1991

APPROVAL SHEET

PHYSIOLOGICAL STUDIES ON THE PROPAGATION OF SOME TIMBER TREES GROWN IN EGYPT

Ву

NASR RAGHEB SAID

B.Sc.Agric. (Horticulture), Ain Shams University, 1968M.Sc.Agric. (Horticulture), Ain Shams University, 1984

This Thesis For Ph. D. Degree Has Been

Approved by: Mestaga

Prof. Dr. M.B. Mostafa

Prof. of Floriculture

Fac. Agric. Zagazig Univ.

Prof. Dr. E.S. Nofal

Prof. of Ornamental Horticulture

Fac. Agric. Tanta Univ.

Prof. Dr. M.R. Shedeed

Prof. of Floriculture

Fac. Agric. Ain Shams Univ.

M.R. Chedges

Date of examination: 24/7/1991

PHYSIOLOGICAL STUDIES ON THE PROPAGATION OF SOME TIMBER TREES GROWN IN EGYPT

BY

NASR RAGHEB SAID

B.Sc. Agric.(Horticulture), Ain Shams University, 1968 M.Sc. Agric.(Horticulture), Ain Shams University, 1984

Under the Supervision of **Prof.Dr.** Mahmoud Rashad Shedeed
Prof. of Horticulture
Faculty of Agriculture,
Ain Shams University.

Prof.Dr. Khairy M. E1-Gamassy
Prof. of Horticulture
Faculty of Agriculture.
Ain Shams University.

ABSTRACT

This study was undertaken during the years from 1985 to 1987 to study the best method of vegetative propagation of some timber trees grown in Egypt namely: <u>Eucalyptus citriodora</u>, <u>Populus x canadensis</u> and <u>Pinus eldarica</u>.

I. Stem cuttings were collected in early February, March and April and treated with different methods of IBA application. The results obtained favoured the cuttings in March for E. citriodora, P. canadensis and Pinus eldarica is accurate. Mature cuttings could be treated successfully by soaking cuttings for 24 hrs in IBA solution at 400 ppm. for E. citriodora and at 800 ppm. for Populus x canadensis stem cuttings, accompanied with higher root number, and best length was produced. Pinus eldarica stem cutting treated with tooth pick soaked for 24 hrs in IBA solution at

4000 ppm., dried and inserted into the basal end of cuttings increased rooting percentage, and induced more roots than those treated with quick dipping for 15 second in IBA or soaked for 24 hrs in higher concentrations of IBA. Root promotion activety in basal cuttings of the three species was determined by HPLC and cow pea bioassay, positive correlation was found between rooting ability of cuttings and cow pea rooting promotor at R_{\star} 0.9- R_{\star} 1.0 of the chromatograms.

II. The second experiment was carried out to investigate the best procedure of tissue culture technique that can be used for propagating the timber trees under investigation: <u>Eucalyptus citriodora</u>, <u>Populus</u> x <u>canadensis</u> and <u>Pinus eldarica</u>.

The obtained results reveal that shoot tip segments collected from 3 years old trees for E. citriodora and Pinus eldarica and from adult trees for Populus x canadensis were cultured on M & S basal medium supplemented with BA and NAA combination. Multiple shoots were obtained most consistently in test with NAA and BA. The production of shoots increased with BA concentration up to 1 mg/l for E. citriodora and Populus x canadensis, and up to 2.5 mg/l for Pinus eldarica. The shoots could be separated and rooted in medium supplemented with NAA The best rooting percentage was obtained when NAA at 0.1 mg/l was applied to <u>Eucalyptus</u> citriodora and Populus x canadensis rooting medium. rooting percentage was obtained from Pinus eldarica when NAA applied at 1.0 mg/l. Plantlets could be successfully hardened and grow outdoor. The microscopic examination of different sections reveal that root primordia were originated from callus cell.

ACKNOWL EDGEMENT

I wish to express my sincerest appreciation and profound gratitude to Prof. Dr. Mahmoud Rashad Shedeed Prof. of Floriculture, Department of Horticulture, Faculty of Agriculture, Ain Shams University for his valuable supervision, helpful suggestion and fruitful encouragement during this study.

Sincere appreciation is also due to prof. Dr. Khairy Mohamed El-Gamassy Prof. of Floriculture, Department of Horticulture, Faculty of Agriculture, Ain Shams University for his supervision guidance and sustained help during the course of study.

Deep thanks to Dr. H. El-Hennawy assistant Professor of Pomology, Department of Horticulture, Fac. Agric. Ain Shams University, for his sincere help.

I am cordially indebted to Dr. Ishak F. Ishak, Lecturer of Botany, Botany Department, Faculty of Science, Ain Shams University, for his help in the histological study of this work.

CONTENTS

			Page
ī.	INTRODUCT	ION	1
II.	1. Cutt	LITERATURE ings ue Culture	3 3 13
III.	1. Cutt	AND METHODS ings ue Culture	33 33 40
IV.	A. Cutt 1. 2.	ND DISCUSSION ings Effect of planting date Effect of different methods of IBA application	50 50 50 52
	3. 4. 5. 6. 7. 8.	Rooting percentage Average root number Average root length Endogenous root promoting substances Nutritional status Root inhibitor substance Histological studies	53 78 91 110 115 119
		ue Culture Eucalyptus citriodora a. Control of oxidative browning b. Proliferation c. Rooting and survival rate d. Effect of sugar on rooting media	139 139 139 142 146 151
	2.	<pre>Populus x canadensis a. Proliferation b. Rooting and survival rate</pre>	153 153 157
	3.	Pinus eldarica a. Proliferation b. Rooting and survival rate	162 162 166
	4.	Histological studies a. <u>Eucalyptus citriodora</u> b. <u>Populus x canadensis</u> c. <u>Pinus eldarica</u>	171 171 175 178
٧.	SUMMARY		179
VI.REFERENCES		189	
VII.	ARABIC SU	MMARY	

LIST OF TABLES

		Page
Table (1):	Effect of planting date and quick dipping in different concentrations of IBA on rooting percentage of Eucalyptus citriodora stem cuttings during 1986 and 1987, seasons.	51
Table (2):	Effect of planting date and quick dipping in different concentrations of IBA on rooting percentage of <u>Populus</u> x <u>canadensis</u> stem cuttings during 1986 and 1987, seasons.	55
Table (3):	Effect of planting date and quick dipping in different concentrations of IBA on rooting percentage of <u>Pinus eldarica</u> stem cuttings during 1986/1987, seasons.	59
Table (4):	Effect of planting date and soaking for 24 hours in different concentrations of IBA on rooting percentage of <u>Eucalyptus citriodora</u> stem cuttings during 1986/1987, seasons.	63
Table (5):	Effect of planting date and soaking for 24 hours in different concentrations of IBA on rooting percentage of <u>Populus</u> x <u>canadensis</u> stem cuttings during 1986/1987, seasons.	67
Table (6):	Effect of planting date and soaking for 24 hours in different concentrations of IBA on rooting percentage of Pinus x eldarica stem cuttings during 1986/1987, seasons.	71
Table (7):	Effect of planting date and tooth pick method of IBA application on rooting percentage of <u>Pinus elderica</u> stem cuttings during 1986/1987, seasons.	75
Table (8):	Effect of IBA on the root number and root length of <u>Eucalyptus citriodora</u> stem cuttings prepared on February, March and April during 1986, seasons.	79
Table (9):	Effect of IBA on the root number and root length of <u>Eucalyptus</u> <u>citriodora</u> stem cuttings prepared in February, March and April during 1987, season.	86

		Page
Table (10):	Effect of IBA on the root number and root length of <u>Populus</u> x <u>canadensis</u> stem cuttings prepared in February, March and April during 1986, season.	92
Table (11):	Effect of IBA on the root number and root length of <u>Populus</u> x <u>canadensis</u> stem cuttings prepared in February, March and April during 1987, season.	98
Table (12):	Effect of three methods of IBA application on root number of <u>Pinus eldarica</u> stem cuttings prepared in February, March and April during 1986/1987, seasons.	104
Table (13):	Effect of three methods of IBA application on root length of <u>Pinus eldarica</u> stem cuttings prepared in February, 'arch and April during 1986/1987, seasons.	107
Table (14):	Changes in naturally occurring rooting substances in <u>Eucalyptus citriodora</u> , <u>Populus x canadensis</u> and <u>Pinus eldarica</u> stem cuttings.	111
Table (15):	Seasonal variation in nitrogen, carbohydrate content and C/N ratio in stem cuttings of <u>Eucalyptus citriodora</u> , <u>Populus</u> x <u>canadensis</u> and <u>Pinus eldarica</u> during 1986 season.	115
Table (16):	Seasonal variation in nitrogen, carbohydrate content and C/N ratio in stem cuttings of <u>Eucalyptus citriodora</u> , <u>Populus x canadensis</u> and <u>Pinus eldarica</u> during 1987 season.	118
Table (17):	Inhibitor percentage calculated for Eucalyptus citriodora stem cuttings extracts, and their effect on rooting of cow pea cuttings.	120
Table (18):	Inhibitor percentage calculated for Populus x canadensis stem cuttings extracts, and their effect on rooting of cow pea cuttings.	122
Table (19):	Inhibitor percentage calculated for Pinus eldarica stem cuttings extracts, and their effect on rooting of cow pea cuttings.	124

		Page
Table (20):	Medium effect on oxidative browning, callusing and shoot proliferation from different <u>Eucalyptus</u> citriodora, explants.	138
Table (21):	Effect of BA and NAA concentration on the pattern of morphogenesis of cultured shoot tips of <u>Eucalyptus</u> <u>citriodora</u> after 6 weeks.	141
Table (22):	Effect of adding NAA to rooting media on the rooting percentage, transplant survival and growth of microcuttings of Eucalyptus citriodora, explant.	145
Table (23):	Effect of BA and NAA concentrations on the pattern of morphogenesis of cultured shoot tips of <u>Populus</u> x <u>canadensis</u> after 6 weeks.	152
Tabel (24):	Effect of adding NAA to rooting media on the rooting percentage, transplant survival and growth of microcuttings of Populus x canadensis , explant.	156
Table (25):	Effect of BA and NAA concentrations on the pattern of morphogenesis of cultured shoot tips of <u>Pinus eldarica</u> after 6 weeks.	161
Table (26):	Effect of adding NAA to rooting media on the rooting percentage, transplant survival and growth of microcuttings of Pinus eldarica, explant.	165

LIST OF FIGURES

		Page
Fig. (1):	Effect of planting date and quick dipping in different concentrations of IBA on rooting percentage of Eucalyptus citriodora stem cuttings during 1986.	52
Fig. (2):	Effect of planting date and quick dipping in different concentrations of IBA on rooting percentage of Eucalyptus citriodora stem cuttings during 1987.	53
Fig. (3):	Effect of planting date and quick dipping in different concentrations of IBA on rooting percentage of <u>Populus</u> x <u>canadensis</u> stem cuttings during 1986.	56
Fig. (4):	Effect of planting date and quick dipping in different concentrations of IBA on rooting percentage of <u>Populus</u> x <u>canadensis</u> stem cuttings during 1987.	57
Fig. (5):	Effect of planting date and quick dipping in different concentrations of IBA on rooting percentage of <u>Pinus eldarica</u> stem cuttings during 1986.	60
Fig. (6):	Effect of planting date and quick dipping in different concentrations of IBA on rooting percentage of <u>Pinus eldarica</u> stem cuttings during 1987.	61
Fig. (7):	Effect of planting date and soaking for 24 hours in different concentrations of IBA on rooting percentage of <u>Eucalyptus</u> citriodora stem cuttings during 1986.	64
Fig. (8):	Effect of planting date and soaking for 24 hours in different concentrations of IBA on rooting percentage of <u>Eucalyptus</u> citriodora stem cuttings during 1987.	65
Fig. (9):	Effect of planting date and soaking for 24 hours in different concentrations of IBA on rooting percentage of <u>Populus</u> x <u>canadensis</u> stem cuttings during 1986.	68
Fig.(10):	Effect of planting date and soaking for 24 hours in different concentrations of IBA on rooting percentage of <u>Populus</u> x <u>canadensis</u> stem cuttings during 1987.	69

		Page
Fig.(11):	Effect of planting date and soaking for 24 hours in different concentrations of IBA on rooting percentage of <u>Pinus</u> x <u>eldarica</u> stem cuttings during 1986.	72
Fig.(12):	Effect of planting date and soaking for 24 hours in different concentrations of IBA on rooting percentage of <u>Pinus</u> x <u>eldarica</u> stem cuttings during 1987.	73
Fig.(13):	Effect of planting date and tooth pick method of IBA application on rooting percentage of <u>Pinus eldearica</u> stem cuttings during 1986.	76
Fig.(14):	Effect of planting date and tooth pick method of IBA application on rooting percentage of <u>Pinus eldearica</u> stem cuttings during 1987.	77
Fig.(15):	Effect of quick dipping in IBA on the root number of <u>Eucalyptus citriodora</u> stem cuttings pre[ared on February, March and April during 1986.	80
Fig.(16):	Effect of quick dipping in IBA on the root length of <u>Eucalyptus citriodora</u> stem cuttings pre[ared on February, March and April during 1986.	81
Fig.(17):	Effect of soaking in IBA on the root number of <u>Eucalyptus citriodora</u> stem cuttings prepared on February, March and April during 1986.	82
Fig.(18):	Effect of soaking in IBA on the root length of <u>Eucalyptus citriodora</u> stem cuttings prepared on February, March and April during 1986.	83
Fig.(19):	Effect of quick dipping in IBA on the root number of <u>Eucalyptus citriodora</u> stem cuttings prepared in February, March and April during 1987.	87
Fig.(20):	Effect of quick dipping in IBA on the root length of <u>Eucalyptus citriodora</u> stem cuttings prepared in February, March and April during 1987	88

		Page
Fig.(21):	Effect of soaking in IBA on the root number of <u>Eucalyptus</u> <u>citriodora</u> stem cuttings prepared in February, March and April during 1987.	89
Fig.(22):	Effect of soaking in IBA on the root length of <u>Eucalyptus</u> <u>citriodora</u> stem cuttings prepared in February, March and April during 1987.	90
Fig.(23):	Effect of quick dipping in IBA on the root number of <u>Populus</u> x <u>canadensis</u> stem cuttings prepared in February, March and April during 1986.	93
Fig.(24):	Effect of quick dipping in IBA on the root length of <u>Populus</u> x <u>canadensis</u> stem cuttings prepared in February, March and April during 1986.	94
Fig.(25):	Effect of soaking in IBA on the root number of <u>Populus</u> x <u>canadensis</u> stem cuttings prepared in February, March and April during 1986.	95
Fig.(26):	Effect of soaking in IBA on the root length of <u>Populus</u> x <u>canadensis</u> stem cuttings prepared in February, March and April during 1986.	96
Fig.(27):	Effect of quick dipping in IBA on the root number of <u>Populus</u> x <u>canadensis</u> stem cuttings prepared in February, March and April during 1987.	99
Fig.(28):	Effect of quick dipping in IBA on the root length of <u>Populus</u> x <u>canadensis</u> stem cuttings prepared in February, March and April during 1987.	100
Fig.(29):	Effect of soaking in IBA on the root number of <u>Populus</u> x <u>canadensis</u> stem cuttings prepared in February, March and April during 1987.	101
Fig.(30):	Effect of soaking in IBA on the root length of <u>Populus</u> x <u>canadensis</u> stem cuttings prepared in February, March and April during 1987.	102

		Page
Fig.(31):	Effect of three methods of IBA application on root number of <u>Pinus eldarica</u> stem cuttings prepared in February, March and April during 1986.	105
Fig.(32):	Effect of three methods of IBA application on root number of <u>Pinus eldarica</u> stem cuttings prepared in February, March and April during 1987.	106
Fig.(33):	Effect of three methods of IBA application on root length of <u>Pinus eldarica</u> stem cuttings prepared in February, March and April during 1986.	108
Fig.(34):	Effect of three method of IBA application on root length of <u>Pinus eldarica</u> stem cuttings prepared in February, March and April during 1987.	109
Fig.(35):	Cross section of hard wood stem cutting of <u>Eucalyptus</u> citriodora showing the papillate epidermal cells.	126
Fig.(36):	Cross section of hard wood stem cutting of <u>Eucalyptus citriodora</u> showing the cortex (Co) contains parenchymatous cells. Lyginus duct. The phloem (Ph) risen tube. The xylem (x).	126
Fig.(37):	Cross section of hard wood stem cutting of <u>Eucalyptus citriodora</u> showing: root primordia was initiated from inner parenchyma cells of cortex.	127
Fig.(38):	Cross section of hard wood stem cutting of <u>Eucalyptus citriodora</u> showing: root primordia continued the growth to produce adventitious root.	127
Fig.(39):	Cross section of hard wood cuttings of Eucalyptus citriodora showing: The anatomical structure of the formed adventitious root.	129
Fig.(40):	Cross section of hard wood stem cutting of <u>Populus</u> x <u>canadensis</u> showing the anatomical characters before root primordia initiation.	130
Fig.(41):	Cross section of stem cutting of $\frac{\text{Populus}}{\text{canadensis}}$.	130

		Page
Fig.(42);	Cross section of hard wood cutting of Populus x canadensis showing the beginning of primordia formation.	131
Fig.(43):	Cross section of stem cutting of <u>Populus</u> x <u>canadensis</u> showing transition state between the formation of primordia and adventitious root separation.	131
Fig.(44):	Cross section of hard wood stem cutting of <u>Populus</u> x <u>canadensis</u> showing the complete separation of the adventitious roots.	132
Fig.(45):	Cross section of hard wood cutting of Pinus eldarica showing cortex (Co) phloem: Xylem (X) and Pith (P).	135
Fig.(46):	Cross section of hard wood cutting <u>Pinus</u> <u>eldarica</u> showing that root primordia was initiated from the cambium zone.	135
Fig.(47):	Cross section of hard wood cuttings of Pinus eldarica showing continued in growth to produce adventitious roots.	136
Fig.(48):	Cross section of hard wood cutting of Pinus eldarica showing the initiation of the formed adventitious roots through the cortex to out side.	136
Fig.(49):	The effect of immersion of <u>Eucalyptus</u> <u>citriodora</u> shoot tip explant in a solution of 1% ascorbíc acíd.	139
Fig.(50):	Effect of BA and NAA concentrations on the pattern of morphogenesis of cultured shoot tips of <u>Eucalyptus</u> <u>citriodora</u> after 6 weeks.	143
Fig.(51):	Effect of adding NAA to rooting media on the rooting percentage, transplant survival and growth of microcuttings of <u>Eucalyptus</u> <u>citriodora</u> , explant.	147
Fig.(52):	The effect of sucrose concentration on Eucalyptus citriodora explant rooting.	150
Fig.(53):	Effect of BA and NAA concentration on the pattern of morphogensis of cultured shoot tips of Populus x canadensis after 6 weeks.	153